
Weakly Supervised Deep Image Hashing through Tag Embeddings

Vijetha Gattupalli, Yaoxin Zhuo, Baoxin Li

Arizona State University

{vijetha.gattupalli, yzhuo6, baoxin.li}@asu.edu

Abstract

Many approaches to semantic image hashing have been

formulated as supervised learning problems that utilize im-

ages and label information to learn the binary hash codes.

However, large-scale labelled image data is expensive to

obtain, thus imposing a restriction on the usage of such

algorithms. On the other hand, unlabelled image data is

abundant due to the existence of many Web image reposito-

ries. Such Web images may often come with image tags that

contain useful information, although raw tags in general do

not readily lead to semantic labels. In this paper, we for-

mulate the problem of semantic image hashing as a weakly-

supervised learning problem, utilizing user-generated tags

associated with the images to learn the hash codes. Specif-

ically, we extract the word2vec semantic embeddings of the

tags and use the information contained in them for con-

straining the learning. Accordingly, we name our model

Weakly Supervised Deep Hashing using Tag Embeddings

(WDHT). WDHT is tested for the task of semantic image

retrieval and is compared against several state-of-art mod-

els. Results show that our approach sets a new state-of-art

in the area of weekly supervised image hashing.

1. Introduction

Semantic Image Hashing has been an active research

area for the past few years due to its usefulness in efficient

search of massive image databases. Briefly, the task is to

map images to binary codes such that some notion of se-

mantic similarity is preserved. Often, similarity is deter-

mined by ground-truth class labels, which are expensive to

obtain and thus limit the amount of training data available.

On the other hand, many Web images today have associated

textual meta-data (tags) often readily available without cost.

Owing to these facts, in this paper, we attempt the problem

of weekly supervised semantic image hashing by leveraging

the tag information associated with the Web images.

We employ a weakly-supervised approach mainly due

to the following reasons. Tags may contain some informa-

tion related to the semantics of the images. However, it

Sample 1 Sample 2 Sample 3

Im
a

g
es

T
a

g
s #india #cinema #movie

#star #still #handsome

#bollywood #actor #khan

#shahrukh #srk

#omshantiom

#sunset #bali #reflections

#indonesia #mirror #asia

#boda #mariage #hochzeit

#indonesien #heirat

#chappel #conradhotel

#50faves #justimagine

#weddingchappel

#perfectangle #infinestyle

#megashot

#theroadtoheaven

#thegoldendreams

#wood #trees #fence #track

#derbyshire #farming

#wideangle #fields

#agriculture #grassland

#sigma1020 #autums

#marlock #holestone

#holestonemoor

L
a

b
el

s

dancing

buildings, clouds,

reflection, sky,

sunset

grass, sky, tree

Table 1: Illustrating the image-tag-label triplet for some

random samples from NUS-WIDE dataset.

is non-trivial to extract explicit label information from raw

tags. Table 1 illustrates three samples from the NUS-WIDE

dataset. It can be noticed that sample 1 has no tag directly

associated with the label “dancing”. While samples 2 and 3

have some tags conveying label information, there are other

shortcomings. For example, they are associated with too

many uninformative tags. These uninformative tags may

be a consequence of the social-media behaviour of the pub-

lic like opinion expression, self presentation, attracting at-

tention etc. [1] This results in tags that may be subjective

(eg. #thegoldendreams, #handsome), purely context ori-

ented (eg. #india, #conradhotel, #katrina), photography re-

lated (#wideangle) etc. Thus these tags contain information

which is not as much related to the image content as labels,

making label extraction from tags more difficult. There are

some prior works [1], [2] that attempted to address the dif-

ficulties in extracting information from raw tags.

Even though our work focuses on using tag informa-

tion in learning the hash space, our algorithm does not fall

under the category of cross-modal hashing (CMH). CMH

deals with learning hash spaces that are shared for sam-

ples from various modalities. Ideally, a space thus learnt

10375

should be able to retrieve samples from one modality by us-

ing query samples from a different modality (e.g., retrieving

images/videos using text queries and vice versa) [3]. Our

work only deals with direct image hashing where the query

and retrieval samples are images. We only utilize the infor-

mation from tags to learn better hash spaces for semantic

image retrieval. Further, much work in CMH assumes the

availability of image-tag-label triplets and use this informa-

tion to learn the shared hash space, leading to supervised

learning, while ours is a weakly supervised approach.

A key component of our method is the utilization of

the word2vec model [4], a method for embedding English

words onto a vector space such that the cosine similarity be-

tween the vectors of the words is in accordance with their

semantic similarity. In our task, the <image,tag set> pairs

are from the Web image datasets, and the tags generally

bear some relevance to the semantics of the image (albeit

this relevance may be weak, noisy, and incomplete). Hence

we employ the word2vec representation of the tags in our

model, and regularize the learned hash space in such a way

that images having similar tag vectors should have similar

hash codes. Using the word vectors of the tags may lead

to a better semantic hash space as compared to using only

the binary tag vectors themselves. For example, if the train-

ing data contains images of cats and dogs, and several other

non-animal classes, we would want the hash sub-spaces of

the cats and the dogs to be close to each other. Further, an

animal in a test set (e.g.,horse), whose true class is not de-

fined in the training set would ideally be mapped to a code

closer to the combined sub-space of the cat and the dog,

than to other non-animal classes. Such desired arrangement

of the sub-spaces could be naturally attained through em-

ploying the word-vector similarities of the tags in training.

In this work, we propose a deep neural network, com-

plete with a learning algorithm, for weakly supervised

learning of a semantic hashing model through using the

word embeddings of the image tags. To the best our knowl-

edge, this is the first work to use an end-to-end deep model

to learn hash vectors using images and tags alone (without

using labels). On the particular task of image hashing, our

method appears to be the first work on using word embed-

dings of tags in a weakly supervised setting. We evaluate

our approach and report systematic comparison with rele-

vant state-of-the-art, and our approach is shown to outper-

form existing unsupervised or weakly supervised hashing

methods for semantic image retrieval.

2. Related Work

Much effort in the area of semantic image hashing has

been directed towards supervised methodologies. While

there is some work in the area of unsupervised hashing,

very little attempt was made in weakly supervised hash-

ing. Therefore, we compare our model to both weakly su-

pervised and unsupervised methods during evaluation. On

similar lines, in this section, we give a brief overview of the

related work from both the areas.

One foremost image hashing algorithm called the Local-

ity Sensitive Hashing [5] works on the principle of project-

ing the data on to random hyperplanes and computing each

bit based on which half-space the sample falls into. This

algorithm is data-independent and therefore the produced

hash codes do not capture the structure in the data. Several

variants [6], [7], [8] have been proposed, all producing hash

codes irrespective of the distribution of the data.

Another paradigm of image hashing is the data-

dependent hashing methods. Traditionally data-dependent

methods have been formulated as independent feature learn-

ing and hash coding stages. With the advent of deep learn-

ing and big data, the literature has moved towards learning

hash codes as single stage algorithms, taking in images as

inputs and directly learn the hash codes. This can also be in-

terpreted as an inbuilt feature learning technique that does

not require human intervention.

Approaches such as [9], [10], [11] are some representa-

tive works of non-deep learning based unsupervised learn-

ing. [9] tried to minimize the quantization error between

the real-valued uncorrelated feature vector and the binary

code by finding a rotation of the zero-centered data. [10]

showed the analogy between the problem of finding the op-

timal hash space distribution and graph partitioning algo-

rithm and attempted the problem using spectral ways. [11]

attempted the problem of learning hash spaces in a semi-

supervised way by back propagating the classification loss

over a limited labeled data-set and an entropy based loss

over the entire labelled and unlabelled data-set.

Representative deep-learning-based unsupervised hash-

ing algorithms include [12], [13], [14]. The work of [12],

though being deep-learning-based, is not an end-to-end

framework that can take in raw images and produce the

hashes. They used GIST features as inputs to the neural net-

work and learned the hash codes by minimizing the quan-

tization loss, maximum variance loss, and the independent

bit loss. The key idea of [13] is to produce rotation invari-

ant binary codes and showed that they achieve state-of-art

performance on three different tasks namely, image match-

ing, image retrieval and object recognition. The approach

of [14] learns hash codes as the outputs of the hidden layer

of a binary auto-encoder, making the learning problem NP-

hard and thus an alternate optimization scheme was used.

Another note-worthy mention in the area of uni-modal

image hashing is [15]. They utilized the word embedding

of labels as the supervision to learn an image hash space.

While this appears similar to our work, they used vector rep-

resentations of labels, rendering the work to fall under the

category of supervised image hashing, whereas our work

uses vector representations of raw tags.

10376

A common characteristic among most deep learning and

non-deep-learning based semantic hashing methods is that

they rely only on the information from the images to learn

the hash codes, often completely ignoring other associated

metadata. Several works [16], [17], [18] in the area of Cross

Modal Hashing (CMH) attempted utilizing tag information

along with image data to learn the hash space. However,

as mentioned previously, they learn a common hash space

for various modalities of input (image and tag in this case),

which is different from what we intend to do. Among all

the CMH methods, [17] is the closest approach to our work.

[17] intends to align the visual space of images and the se-

mantic space of sentences using language (word2vec) and

vision (CNN based) models. The main difference between

their work and ours is that we attempt to use tag information

which is much noisy than the actual English sentences they

used in their work. Practically, such clean English sentences

are as hard to obtain as the supervised label information. An

extensive discussion on CMH and uni-modal hash learning

can be found in [3] and [19] respectively.

Unlike CMH, weakly supervised hashing methods lever-

age only the image-tag information during training. [20],

[21], [22] are some well-known works in this area. The au-

thors of [20] proposed a framework which consist of two

stages, weakly supervised pre-training and fine-tuning us-

ing supervised labels. [21] used collaborative filtering with

hashing in predicting the image-label associations, where

the ground-truth labels are used to generate the label matrix.

To our best knowledge, [22] is the only prior approach that

attempted truly weekly supervised hashing (i.e., without us-

ing label information). More specifically, they attempted

to explore the discriminative information and the local geo-

metric structure from the tags and images. They then formu-

lated the hashing problem as an eigenvalue problem. Con-

sidering these facts, we only compare our approach to [22]

among the weekly-supervised methods.

In this work, we build an end-to-end deep learning hash-

ing model that does not require expensive labels in training

but can still generate semantically meaningful hash codes.

In the experiments section, we compare our model to the

following unsupervised and weakly supervised image hash-

ing approaches: [9], [10], [11], [14], [21], [22], [23], [24],

[25], [26]. Additionally, to show the significance of the us-

age of tag embeddings, we develop a deep-learning baseline

that learns a semantic hash space using only the binary tag

vectors. More details about our approach and the baseline

model are presented in the next section.

3. Proposed Approach

3.1. Problem Formulation

In this work we assume that the datasets have triplets of

image-tags-labels (xi, Ti, li). Here, xi represents the image

feature vector for the ith sample, Ti represents the corre-

sponding tags set and li represents its binary label vector.

In a generic scenario, each sample is associated with more

than one tag and more than one semantic label. Therefore,

the tags are represented as a set Ti and the labels are repre-

sented as a binary vector li. In the label vector, the value of

an element is 1 if the corresponding label is associated with

that image and is 0 otherwise. Our task is to find a func-

tion Ψ(·) that takes (xi, Ti) as inputs and produces a hash

vector bi as output. The hash space thus learnt should map

semantically similar images, defined by the label vectors,

to nearby hash codes and dissimilar ones to farther codes.

While the labels assumed to be unavailable during the train-

ing phase, they are employed during the testing phase to

measure the performance of the learnt model.

3.2. Tag Processing

Let τ
j
i represent a tag in the tag set Ti,. where j is the in-

dex of the tag in the set, i.e., j ∈ [1,m] where m is the total

number of tags associated with the ith sample. We convert

each tag τ
j
i into a d-dimensional vector using the word2vec

language model [4]. Thus for each tag τ
j
i , we obtain a vec-

tor representation v
j
i which is the word2vec representation

of the tag word τ
j
i . Since each image has multiple tags,

we aggregate all the tag vectors into a single d-dimensional

vector. In this work, we adopted basic functions like tf (tag

frequency), itf (inverse tag frequency) and mean to compute

the aggregated vector wi. In experiments, we will compare

these aggregation techniques by their performance.

The formulae used to compute wi are given below.

mean : wi =
1

m

m∑

j=1

v
j
i tf : wi =

1

m

m∑

j=1

n(τ ji)

N
v
j
i

itf : wi =
1

m

m∑

j=1

log
N

n(τ ji)
v
j
i

(1)

where N is the total number of tags in the database, and

n(τ ji) is the number of images associated with tag τ
j
i .

Thus we arrive at the image - tag vector (xi, wi) pairs

from the initial image - tag set (xi, Ti) pairs.

3.3. Designing a Network for Hashing

We use the pre-trained AlexNet model as a key build-

ing block for our hashing model. The network takes

227X227X3 dimensional images as input and passes them

through five convolutional layers and two fully connected

layers, labelled as CONVi (i=1,...,5), FC1 and FC2. Until

the FC2 layer, the architecture is identical to the AlexNet

[27] architecture and the weights are initialized to the pre-

trained ImageNet [28] weights. The FC2 layer produces a

4096 dimensional vector, which is given as input to another

fully connected layer FC3. FC3 outputs 256 dimensional

10377

Conv1

FC1 FC2

FC3

H1

H2

kernel 64× 11 × 11,
stride 4× 4, ReLU,

pad 0, LRN,

pool 2×2

Ranking Loss +

Quantization Loss

Regression Loss

kernel 256×3×3,

stride 1×1,

ReLU, pad 1

kernel 256×3×3,

stride 1×1, ReLU,

pad 1, pool 2×2

kernel 256× 11 × 11,
stride 1× 1, ReLU,

pad 2, LRN,

Pool 2×2

kernel 256× 3 × 3,
stride 1× 1,

ReLU, pad 1

dense 4096,

ReLU

dense 4096,

ReLU

dense 256,

ReLU
dense d,

tanh

dense b,

tanh

FINAL HASH VECTORS

10101001001010

10101110100010

00010010010001

00100101001010

PRE TRAINED ALEXNET

227×227×3

Conv2 Conv3 Conv4 Conv5

{[0.565, 0.345 …. 0.003], [-0.256, 0.745 …. -0.005]}

{[0.2980, -0.8745 …. -0.1265], [-0.38, -0.042 …. 0.575], [0.8456, 0.002 …. 0.0098]}

{[0.90,0.002 …..0.559], [-0.335, 0.412 …. 0.501], [0.356, 0.52 …. -0.98], [-0.506, 0.025 …. -0.840]}
Tag Aggregation Scheme

𝐿2
𝐿1 + 𝐿3

Original Tag Vectors

Figure 1: Proposed architecture. The green box represents the pre-trained AlexNet model; The FC3, H1 and H2 layers are

the newly appended layers. The final hash codes are extracted from the H1 layer.

vector which is further fully connected to two layers H1 and

H2 in a lateral fashion. The acronyms H1 and H2 represent

the Head1 and Head2 respectively. The outputs of H1 and

H2 are b (number of bits in the hash code) and d (dimen-

sionality of the aggregated tag vector) dimensional vectors,

which are then topped by sigmoid and tanh activations re-

spectively. The overall model is shown in Figure 1. The new

layers beyond the AlexNet layers are initialized with glorot

normal [29] weights. VGG-19 was also attempted, giving

results similar to those of the AlexNet model but with much-

increased training time. Hence we study and compare using

only the Alexnet-based model.

The model is trained on three loss components back

propagating from the two heads H1 and H2 into the net-

work. More specifically, we back propagate pair-wise sim-

ilarity loss and quantization loss from H1, and mini-batch

wise hinge loss from H2. Thus we presume that the loss on

H2 (hinge loss) forces the network to form feature spaces

(especially at the later layers, H2 and FC3) that are in ac-

cordance with the semantic information contained in the ag-

gregated tag vectors, wi. On the other hand, the pair-wise

loss on H1 aligns the hash space such that semantically sim-

ilar image pairs are close by and dissimilar pairs are farther.

Thus the two main loss components augment each other and

guide the network towards learning a semantically mean-

ingful hash space. The third loss component, the quantiza-

tion loss, forces the output of H1 to be close to 0 or 1.

Pairwise Euclidean loss on H1 was first used for hash-

ing in [30] while the quantization loss was first used in [9].

The hinge loss on the head H2 is a ranking loss first used

by [31] to learn a semantically meaningful real-valued im-

age representation using word embeddings of classification

labels. While the hinge loss component does not seem to

serve a clear purpose in this network architecture, empirical

results show that this component contributes significantly

to the performance boost of our model. Also, [31] men-

tioned that using such loss boosts the performance of their

model instead of using a L2 component. They presume that

this could be due to the fact that the problem of forming a

semantically meaningful image representation is a ranking

problem in general and therefore such a ranking loss could

be more relevant. On similar lines, we can argue that the

current problem of learning image hashes is a ranking prob-

lem as well, and thus, such a hinge loss component could

boost the performance of a retrieval system significantly.

During inference, only H1 is used to extract the features,

which are then quantized to obtain the hash code accord-

ing to the following scheme: bi =
1
2 (sgn(h

(1)
i −0.51)+1).

Here, h
(1)
i represents the real-valued feature vector obtained

at the output of H1, sgn represents a sign function that out-

puts 1/−1 based on if the input to the sign function is pos-

itive or negative and lastly, 1 represents a vector of ones of

length b. Thus, we obtain binary codes which have a value

of 1/0 from a raw train/test images.

10378

3.4. Designing the Loss Functions

Pair-wise Similarity Loss: Most state-of-art supervised

learning methods assume binary similarity between two im-

ages: two images can be either similar (1) or dissimilar (0)

depending on if they share a common label. However, in

the current weakly supervised learning context, we intend to

use cosine similarity between the aggregated tag vectors as

the ground truth similarity. Since cosine similarity is real-

valued, taking values between -1 and 1, the ground-truth

similarity in our case is not binary valued, i.e., we can deem

an image pair to be less similar or more similar, instead of

absolutely declaring it to be similar or dissimilar. We con-

sider only this notion of ground truth similarity during train-

ing and stick with the 0/1 similarity during evaluation.

We formulate the pair-wise similarity loss function as

follows. For any image pair (xi, xj), the loss function

should push the corresponding hashes closer if the cosine

distance between them is smaller and vice-versa. The equa-

tion of this loss function is given below,

L1 =

k∑

i=1

k∑

j=1

[
1

b
(h

(1)
i − h

(1)
j)T · (h(1)

i − h
(1)
j)

− 1

2
(1.0− w

T
i · wj

‖wi‖‖wj‖
)]2

(2)

where k is the mini batch size and the two summations

signify computing pairwise losses across all possible pairs.

The vectors h
(1)
i and h

(1)
j represent the output vectors of H1

for sample xi and xj respectively. A lower value of L1 is

obtained when a high value of 1.0 − w
T
i ·wj

‖wi‖‖wj‖
results in a

high value of (h
(1)
i − h

(1)
j)T · (h(1)

i − h
(1)
j) and vice-versa.

Higher value of 1.0 − w
T
i ·wj

‖wi‖‖wj‖
is obtained when the sam-

ples are dissimilar, thus the hash codes should be pushed

apart. Similarly, lower value of this term is obtained when

the samples are similar and therefore the hash codes should

be pushed closer.

Mini-batch-wise Hinge Loss: In addition to the pair-

wise similarity loss, we also intend to back-propagate a loss

that forms a semantic embedding space at the output of H2.

Such a loss function adjusts the feature spaces of not only

the H2 layer but also some of the previous layers (FC3,

FC2), thus transmitting the semantic information from the

tags back into the network. As H1 is connected to the out-

put of FC3, the semantic information contained in FC3 will

aid in learning the hashes at the output of H2, thus enhanc-

ing the model’s performance. To this end, we define the

following loss,

L2 =
∑

n

∑

j 6=n

max[0,margin + wj · h
(2)
n − wn · h

(2)
n] (3)

where h
(2)
n represents the output of the head H2 for the nth

sample in the mini-batch. The loss L2 is 0 only when the

quantity wn · h
(2)
n is more than margin + wj · h

(2)
n . That

is, the value of the loss is zero only when the prediction of

head H2 for the nth sample is closer to the ground truth

aggregated tag vector wn than to any other ground truth tag

vector wj by a margin margin. A similar idea was pre-

viously considered in [32] [33], where the goal was to se-

mantically embed videos onto a space using the word2vec

representation of the video labels. As such, their approach

is supervised (i.e., assuming the label information).

Quantization Loss: We further impose the quantization

loss on the H1 output to force the outputs to be close to 0 or

1, as follows, which penalizes the network if the output of a

neuron is close to 0.5:

L3 = −
k∑

i=1

1

b
(h(1)

n − 0.51)T · (h(1)
n − 0.51) (4)

During training, we weigh the three loss components L1,

L2 and L3 by factors λ1, λ2 and λ3 respectively. There-

fore the resultant loss that will be back-propagated is: L =
λ1L1 + λ2L2 + λ3L3.

3.5. The binary tagvector model

In addition to comparing our method with several state-

of-art models, we built another deep-learning baseline that

uses the binary tag vectors for supervision, unlike the

word2vec tag embeddings we used in WDHT. We call this

model the binary tag-vector model in the rest of the text.

The reason for this baseline is that we want to evaluate how

the network performs if it is trained similar to the state-of-

art supervised models where label-similarity is used to com-

pute the loss. This model has no aggregated word2vec to

regress the outputs. To accommodate this, we make slight

modifications to our model. First, we suppose that two im-

ages are similar if both share at least one tag. This is cer-

tainly not a perfect metric, but it is similar to most state-

of-art supervised models, where sharing at least 1 common

label is used to define similarity. Also, we use L4 loss rather

than L2 loss in this model since we only have a binary no-

tion of similarity rather than the original case with cosine

similarity. Since our problem setting is weakly supervised,

we use tag vectors instead of label vectors. Tag vectors are

binary vectors whose length is equal to the total number of

tags in the data-set and will have a value of 1 if the tag is

associated with the image and 0 otherwise.

Regarding the network architecture, only the head H1

is kept and H2 is completely removed. We do this owing

to the fact that the real-valued vectors (like aggregated tag

vectors in the above scenario) are not available in this case,

to regress the outputs to. Additionally, in the previous case,

the loss applied on H1, i.e., the L1 component has a real-

valued ground truth similarity, unlike the current scenario.

10379

Method 12 bits 24 bits 32 bits 48 bits

itf 0.6124 0.6323 0.6531 0.6644

tf 0.6394 0.6836 0.6881 0.6835

mean 0.6709 0.6805 0.6955 0.6621

Table 2: Comparing the mAP of the model with the itf, tf or

mean aggregation functions for the NUS-WIDE dataset.

Therefore, we use a different loss component (contrastive

loss) to accommodate the binary valued ground truth simi-

larity labels. The equation of the loss is as follows,

L4 =

k∑

i=1

k∑

j=1

S(1− β)D + (1− S)β(max(0,margin −D))2

where D =
1

b
(h

(1)
i − h

(1)
j)

T

· (h(1)
i − h

(1)
j)

(5)

Here, margin represents the margin associated with

the hinge loss component of the contrastive loss, S repre-

sents the ground truth similarity label, and β represents the

fraction of similar sample pairs present in the mini batch.

Weighing the loss sub-components by β and 1 − β respec-

tively are important due to the fact that in any mini-batch

only a small fraction of the image pairs will have at least

one tag in common, thus making the dataset highly imbal-

anced. We therefore incorporate β weight factor in the loss.

Thus the final loss for the binary tag-vector model be-

comes: L = λ3L3 + λ4L4

4. Experiments and Results

This section reports experimental evaluation of the pro-

posed method with comparison to the relevant state-of-the-

art approaches. The source code implementing the pro-

posed method is available from the last author’s Website.

4.1. Datasets

NUS-WIDE This is a Web image dataset with 269,648

images collected from Flickr. Each image is associated with

a set of tags. [34] presents that there is a total of 425,059

tags associated with the 269k images. Further, the authors

of [34] conducted manual annotation of these images to a

predefined set of 81 labels. For our experiments, we used

only the images that are associated with at least one of the

21 most frequent labels. Thus we formed a training set of

100,000 images and a testing set of 2,000 images. We used

the whole training set as the database and the testing set as

the query set during evaluation.

MIR-FLICKR25K This is a comparatively smaller

dataset with 25,000 images collected from Flickr and con-

tains 1386 tags associated with them. [35] manually asso-

ciated the images with 38 semantic categories. For our ex-

periments, we used the images which are associated with

at least one of the 38 categories. Thus we used a total of

16,000 images for training and 2,000 for testing. For both

the data-sets, we randomly picked the testing set without

considering the labels of the images.

To our best knowledge, these are the only two

commonly-used datasets that contain image-tag-label

triplets. (E.g., CIFAR-10 does not have tag information.)

So we use these two datasets for experiments.

4.2. Training

We trained our model using mini-batch gradient descent

with a learning rate of 0.001 for the last three layers (FC3,

H1, and H2) and a learning rate of 0.0001 for the pre-trained

layers (from CONV1 to FC2). We also used the momen-

tum term with the rate of momentum equal to 0.9. The

weighing factors for the losses, λ1, λ2, λ3 and λ4, are set to

1.0, 10.0, 1.0 and 1.0 respectively for all the experiments,

which were determined by performing a grid search over

the hyper-parameter space. The word2vec model that we

used was pre-trained (using Wikipedia documents) and out-

puts a 300-dimensional vector for a given word. Therefore

the number of output neurons on H2 is set to 300.

4.3. Performance Evaluation

We evaluated the learned hash codes for the task of

semantic image retrieval. We used the mean-Average-

Precision (mAP) metric for comparing performance. We

used the same protocol used by [36], [37], [38] and several

others to compute the mAP values. The results are com-

pared against eleven state-of-art approaches ITQ, PCAH,

LSH, DSH, SpH, SH, AGH, DH, UH-BDNN, DeepBit and

WMH. All the methods, except WMH are run using the

code provided by the authors and for the suggested hyper-

parameter settings. As most of the works presented here are

based on the pre-determined feature vectors, we extracted

the 4096-dimensional vectors from the AlexNet model (i.e

the output of FC2) and used them as input to these methods.

For WMH we directly quote the results from the original pa-

per (the code is not publicly available). For a fair compar-

ison, we run our model with the same experimental setting

as WMH and report the results. We first filtered the images

and tags in WMH’s standard, then performed another round

of experiments using only 5,000 training images and 1,000

query images for the two datasets.

Firstly, to finalize the tag aggregation scheme, we com-

pared the performance of our model using the itf, tf and

mean functions for aggregation on NUS-WIDE data-set.

We noticed that mean worked slightly better than the idf

and tf as can be seen from Table 2. Further, we performed

a variance analysis on the word vectors of tags associated

with each image. More specifically, we computed the vari-

ance of the tag vectors for each image and then analyzed the

10380

Algorithm NUS-WIDE MIRFLICKR-25K

12bits 24bits 32bits 48bits 12bits 24bits 32bits 48bits

ITQ [9](non-deep) 0.5295 0.5227 0.4932 0.5275 0.6418 0.655 0.6253 0.6504

PCAH [11](non-deep) 0.4566 0.4209 0.4016 0.3971 0.6098 0.6033 0.6085 0.6169

LSH [5](non-deep) 0.3308 0.3682 0.3726 0.3918 0.5708 0.5885 0.5843 0.6015

DSH [23](non-deep) 0.5065 0.5118 0.4902 0.4807 0.6561 0.6593 0.644 0.6422

SpH [24](non-deep) 0.3829 0.3959 0.3907 0.3947 0.586 0.5785 0.5789 0.5789

SH [10](non-deep) 0.4503 0.4029 0.4006 0.3731 0.6251 0.6157 0.6044 0.596

AGH [26](non-deep) 0.535 0.5226 0.497 0.4791 0.6378 0.6484 0.6473 0.6346

DH [12](deep) 0.4036 0.3974 0.3932 0.4014 0.5833 0.5945 0.5932 0.5942

UH-BDNN [14](deep) 0.4982 0.4996 0.4823 0.4853 0.6324 0.6279 0.6274 0.6258

DeepBit [13](deep) 0.4225 0.4247 0.4359 0.431 0.5974 0.6032 0.6077 0.6115

Binary Tag Vector(deep) 0.4809 0.475 0.4793 0.4702 0.6064 0.6087 0.6077 0.6098

Proposed(WDHT)(deep) 0.6258 0.6397 0.6606 0.647 0.687 0.695 0.6667 0.6621

WMH*(non-deep) 0.299 0.306 0.307 0.309 0.585 0.590 0.582 0.573

Proposed(WDHT*)(deep) 0.4910 0.4916 0.4835 0.485 0.626 0.6355 0.6326 0.6308

Table 3: MAP values of NUS-WIDE and MIR-FLICKR25k data-sets computed using the top 50,000 retrieved images.

Algorithm NUS-WIDE MIRFLICKR-25K

12bits 24bits 32bits 48bits 12bits 24bits 32bits 48bits

ITQ [9](non-deep) 0.6329 0.6299 0.594 0.6478 0.6908 0.7064 0.6684 0.6996

PCAH [11] (non-deep) 0.5766 0.5046 0.49 0.4904 0.643 0.6306 0.6372 0.6516

LSH [5](non-deep) 0.3501 0.4093 0.4169 0.4546 0.5736 0.6049 0.5954 0.6239

DSH [23](non-deep) 0.5919 0.5982 0.5713 0.5791 0.6955 0.7071 0.6834 0.6603

SpH [24](non-deep) 0.4645 0.4645 0.4465 0.4472 0.5966 0.5811 0.5828 0.579

SH [10](non-deep) 0.5623 0.5033 0.4896 0.4533 0.6605 0.6405 0.6291 0.6213

AGH [26](non-deep) 0.6551 0.6459 0.6274 0.6225 0.6862 0.7005 0.6998 0.6853

DH [12](deep) 0.4733 0.4601 0.462 0.4763 0.6033 0.6195 0.6135 0.618

UH-BDNN [14](deep) 0.5923 0.5915 0.5902 0.6097 0.6654 0.6684 0.6672 0.6699

DeepBit [13](deep) 0.5463 0.5548 0.5624 0.561 0.589 0.6027 0.609 0.6086

Binary Tag Vector(deep) 0.6202 0.627 0.6247 0.6249 0.6365 0.6326 0.6373 0.6352

Proposed(WDHT)(deep) 0.6709 0.6805 0.6955 0.676 0.7346 0.743 0.7034 0.7054

Table 4: MAP values of NUS-WIDE and MIR-FLICKR25k data-sets computed using the top 5,000 retrieved images

histogram of the variances for all images. It was found that

a majority of the variances falls below 8. Note that the max-

imum distance between any two word vectors in this space

can be 2
√
300 (the range of each dimension of the tag vector

is [−1, 1] and the space is 300-dimensional). This appears

to suggest that for most of the images, their tag vectors do

not spread out too much, which might explain that the sim-

ple mean aggregation function is working reasonably well.

Further, we computed the mAP for two different set-

tings, one using the top 50,000 retrieved images and an-

other using the top 5,000 retrieved images for the unsu-

pervised approaches and report the results in Table 3 and

Table 4 respectively. The first seven methods presented

here are non-deep-learning methods while the last three

are deep-learning-based. Additionally, DH [12] and UH-

BDNN [14], even though being deep-learning-based, de-

pend on the hand-crafted features. DeepBit [13] is the only

work that takes raw images as input, but its performance is

inferior to most other methods. In contrast, our approach

(WDHT) is an end-to-end framework and performed supe-

rior than all the state-of-art methods on both datasets.

The non-deep-learning approaches ITQ [9] and AGH

[26] seem to stand in the second and the third places in

terms of the mAP values in the experiments. These meth-

ods performed superior to the deep-learning-based methods

([12], [14], [13]) as well. On the other hand, the weakly su-

pervised approach WMH seemed to perform quite inferior

as compared to WDHT with the new experiment setting.

The results are presented as the bottom 2 rows of Table 3.

For further analysis, we plotted the precision-recall

curves in Figure 2. These curves are computed taking into

consideration all the retrieved samples from the database for

a given query image. More specifically, we computed the

average precision for various values of recall (1000 discrete

values of recall) for all query images. The big performance

gain of our approach on the NUS-WIDE data-set can be no-

10381

Figure 2: Precision Recall curves for NUS-WIDE and MIR-FLICKR datasets.

Figure 3: MAP values obtained for various hyper-

parameter settings for the NUS-WIDE dataset

ticed from these graphs as well.

The presence of three loss components in the objective

functions triggers the obvious question of combining them

in the right proportions. To analyze this, we fix the value

of λ1 to 1.0 and change the values of λ2 and λ3 between

0.01 and 100.0. We performed a grid search over this range

and chose the best hyper-parameters for our final model.

Specifically, we set three values to the ones that gave maxi-

mum mAP value over a validation set during the grid search.

For each setting of the hyper-parameter values, we only

used 10,000 training sample due to the high training time

of these experiments. A bar plot of the validation mAPs

of NUS-WIDE dataset for various values of λ2 and λ3 is

given in Figure 3. It can be noticed that higher values of

λ2 and lower values of λ3 gave significantly better mAP

as compared to other combinations. A similar behaviour

was noticed on the MIR-FLICKR dataset as well. This is in

accordance with the rationale presented in Section 3.3 that

a ranking loss is better at forming semantically meaning-

ful spaces as compared to Euclidean loss components [31].

While this rationale is yet to be validated mathematically,

our results suggest this seems to be the case empirically.

5. Conclusion

We attempted the problem of weakly supervised deep

image hashing using tag embedding. Our method is an

end-to-end framework that takes raw images and tags as in-

puts and produces hash codes. The model is applicable to

Web images where tag information is abundant. Through

extensive experiments with comparison with existing state-

of-the-art, we demonstrated that the proposed approach was

able to deliver significant performance boost when evalu-

ated on two well-known and widely-tested datasets. Future

work includes possible better aggregation schemes in the

word2vec space that may lead to improved performance.

Acknowledgment The work is supported in part by a grant

from ONR (N00014-19-1-2119). Any opinions expressed

in this material are those of the authors and do not necessar-

ily reflect the views of ONR.

10382

References

[1] Manish Gupta, Rui Li, Zhijun Yin, and Jiawei Han. Sur-

vey on social tagging techniques. ACM Sigkdd Explorations

Newsletter, 12(1):58–72, 2010.

[2] Shilad Sen, F Maxwell Harper, Adam LaPitz, and John

Riedl. The quest for quality tags. In Proceedings of the 2007

international ACM conference on Supporting group work,

pages 361–370. ACM, 2007.

[3] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang

Wang. A comprehensive survey on cross-modal retrieval.

arXiv preprint arXiv:1607.06215, 2016.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.

Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

[5] Moses S Charikar. Similarity estimation techniques from

rounding algorithms. In Proceedings of the thiry-fourth an-

nual ACM symposium on Theory of computing, pages 380–

388. ACM, 2002.

[6] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. Fast

locality-sensitive hashing. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery

and data mining, pages 1073–1081. ACM, 2011.

[7] Brian Kulis and Kristen Grauman. Kernelized locality-

sensitive hashing. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 34(6):1092–1104, 2012.

[8] Aniket Chakrabarti, Venu Satuluri, Atreya Srivathsan, and

Srinivasan Parthasarathy. A bayesian perspective on locality

sensitive hashing with extensions for kernel methods. ACM

Transactions on Knowledge Discovery from Data (TKDD),

10(2):19, 2015.

[9] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Flo-

rent Perronnin. Iterative quantization: A procrustean ap-

proach to learning binary codes for large-scale image re-

trieval. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(12):2916–2929, 2013.

[10] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral

hashing. In Advances in neural information processing sys-

tems, pages 1753–1760, 2009.

[11] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-

supervised hashing for large-scale search. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

34(12):2393–2406, 2012.

[12] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin,

and Jie Zhou. Deep hashing for compact binary codes learn-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2475–2483, 2015.

[13] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. Learn-

ing compact binary descriptors with unsupervised deep neu-

ral networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1183–

1192, 2016.

[14] Thanh-Toan Do, Anh-Dzung Doan, and Ngai-Man Cheung.

Learning to hash with binary deep neural network. In Eu-

ropean Conference on Computer Vision, pages 219–234.

Springer, 2016.

[15] Yue Cao, Mingsheng Long, Jianmin Wang, and Shichen

Liu. Deep visual-semantic quantization for efficient image

retrieval. In CVPR, volume 2, page 6, 2017.

[16] Qing-Yuan Jiang and Wu-Jun Li. Deep cross-modal hashing.

CoRR, 2016.

[17] Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and

Philip S Yu. Deep visual-semantic hashing for cross-modal

retrieval. In Proceedings of the 22nd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, pages 1445–1454. ACM, 2016.

[18] Xing Xu, Fumin Shen, Yang Yang, Heng Tao Shen, and Xue-

long Li. Learning discriminative binary codes for large-scale

cross-modal retrieval. IEEE Transactions on Image Process-

ing, 26(5):2494–2507, 2017.

[19] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen,

et al. A survey on learning to hash. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2017.

[20] Ziyu Guan, Fei Xie, Wanqing Zhao, Xiaopeng Wang, Long

Chen, Wei Zhao, and Jinye Peng. Tag-based weakly-

supervised hashing for image retrieval.

[21] Hanwang Zhang, Na Zhao, Xindi Shang, Huan-Bo Luan, and

Tat-seng Chua. Discrete image hashing using large weakly

annotated photo collections. In AAAI, pages 3669–3675,

2016.

[22] Jinhui Tang and Zechao Li. Weakly-supervised multimodal

hashing for scalable social image retrieval. IEEE Transac-

tions on Circuits and Systems for Video Technology, 2017.

[23] Zhongming Jin, Cheng Li, Yue Lin, and Deng Cai. Den-

sity sensitive hashing. IEEE transactions on cybernetics,

44(8):1362–1371, 2014.

[24] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang,

and Sung-Eui Yoon. Spherical hashing. In Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on,

pages 2957–2964. IEEE, 2012.

[25] Xiaofeng Zhu, Lei Zhang, and Zi Huang. A sparse embed-

ding and least variance encoding approach to hashing. IEEE

transactions on image processing, 23(9):3737–3750, 2014.

[26] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Dis-

crete graph hashing. In Advances in Neural Information Pro-

cessing Systems, pages 3419–3427, 2014.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255.

IEEE, 2009.

[29] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-

ceedings of the Thirteenth International Conference on Arti-

ficial Intelligence and Statistics, pages 249–256, 2010.

10383

[30] Brian Kulis and Trevor Darrell. Learning to hash with binary

reconstructive embeddings. In Advances in neural informa-

tion processing systems, pages 1042–1050, 2009.

[31] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,

Jeff Dean, Tomas Mikolov, et al. Devise: A deep visual-

semantic embedding model. In Advances in neural informa-

tion processing systems, pages 2121–2129, 2013.

[32] Sheng-Hung Hu, Yikang Li, and Baoxin Li. Video2vec:

Learning semantic spatio-temporal embeddings for video

representation. In Pattern Recognition (ICPR), 2016 23rd

International Conference on, pages 811–816. IEEE, 2016.

[33] Y. Li, S. Hu, and B. Li. Recognizing unseen actions in a

domain-adapted embedding space. In 2016 IEEE Interna-

tional Conference on Image Processing (ICIP), pages 4195–

4199, Sep. 2016.

[34] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhip-

ing Luo, and Yantao Zheng. Nus-wide: a real-world web im-

age database from national university of singapore. In Pro-

ceedings of the ACM international conference on image and

video retrieval, page 48. ACM, 2009.

[35] Mark J Huiskes and Michael S Lew. The mir flickr retrieval

evaluation. In Proceedings of the 1st ACM international con-

ference on Multimedia information retrieval, pages 39–43.

ACM, 2008.

[36] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature

learning based deep supervised hashing with pairwise labels.

arXiv preprint arXiv:1511.03855, 2015.

[37] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised

hashing with triplet labels. In Asian Conference on Computer

Vision, pages 70–84. Springer, 2016.

[38] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simulta-

neous feature learning and hash coding with deep neural net-

works. In Computer Vision and Pattern Recognition (CVPR),

2015 IEEE Conference on, pages 3270–3278. IEEE, 2015.

10384

