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ABSTRACT
With the ever-increasing multimedia data on the Web, cross-modal
video-text retrieval has received a lot of attention in recent years.
Deep cross-modal hashing approaches utilize the Hamming space
for achieving fast retrieval. However, most existing algorithms have
difficulties in seeking or constructing a well-defined joint semantic
space. In this paper, an unsupervised deep cross-modal video-text
hashing approach (CLIP4Hashing) is proposed, which mitigates
the difficulties in bridging between different modalities in the Ham-
ming space through building a single hashing net by employing
the pre-trained CLIP model [24]. The approach is enhanced by
two novel techniques, the dynamic weighting strategy and the
design of the min-max hashing layer, which are found to be the
main sources of the performance gain. Compared with conven-
tional deep cross-modal hashing algorithms, CLIP4Hashing does
not require data-specific hyper-parameters. With evaluation using
three challenging video-text benchmark datasets, we demonstrate
that CLIP4Hashing is able to significantly outperform existing
state-of-the-art hashing algorithms. Additionally, with larger bit
sizes (e.g., 2048 bits), CLIP4Hashing can even deliver competi-
tive performance compared with the results based on non-hashing
features.
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• Information systems → Multimedia and multimodal re-
trieval; Video search.
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Figure 1: MSRVTT text to video R@1 comparison (Storage
space vs. Average R@1). The triangles represent hashing
methods (trained with the same CLIP feature). The circles
represent non-hashing methods. We converted bit size and
float number to bytes. The CLIP4Hashing significantly out-
performs other hashing methods, and has competitive per-
formance compared with the non-hashing methods.

Retrieval (ICMR ’22), June 27–30, 2022, Newark, NJ, USA. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3512527.3531381

1 INTRODUCTION
With explosively increasing amount of data on social media plat-
forms like Twitter and TikTok, fast and accurate cross-modal re-
trieval is gaining much attention. Compared with the traditional
cross-modal retrieval algorithms that work in the continuous fea-
ture space, hashing-based algorithms can retrieve data faster and
more efficiently. Conventional hashing-related visual tasks usually
focused only on the visual modality, i.e., the query and retrieval
data are both images or videos. In addition, single-modality hashing
methods are concerned more with seeking discriminative feature
representations than finding the representations of relationships
among the data.
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Figure 2: The pipeline of the proposed CLIP4Hashing (best viewed in color).

Some researchers [3, 18, 25] attempted to apply the single-modality
methods to multi-modality tasks directly. The performance is of-
ten sub-optimal since cross-modality information is not explicitly
considered. Besides, the common method of supervised hashing
would often lead to a more classification-like task, which is not well
supported in the Hamming space.

Recent efforts [8, 11, 13, 31] have looked into hashing for cross-
modal retrieval, which is more practical but challenging, as it is
necessary to model the semantic relationships between different
modalities. On this task, mainstream methods often utilize the joint
semantic affinity matrices to guide the learning of the Hamming
space [17, 26, 32, 40], where a key step is the creation of the simi-
larity matrices. Constructing a good affinity matrix that properly
captures cross-modal correlation for high-performance retrieval
is a non-trivial task, and most existing methods rely on ad hoc
procedures that require complicated hyper-parameter tuning (such
as in [17, 32, 37]). Accordingly, the final retrieval performance is
often limited by these ad hoc procedures.

To tackle the issues mentioned above, we propose a novel unsu-
pervised deep cross-modal hashing approach namedCLIP4Hashing.
It utilizes the pre-trained CLIP model [24] to construct the affinity
matrix and build one single hashing model, which helps to mit-
igate the difficulties in bridging between different modalities in
the Hamming space. A dynamic weighting strategy is introduced
for conditioning the affinity matrix, leading to better discrimina-
tive learning. Further, a min-max hashing layer is designed for
improving binary code generation. Both modules do not require

dataset-specific hyper-parameters and thus result in a more effi-
cient yet flexible hashing scheme. CLIP4Hashing is learned in
an unsupervised fashion, without requiring category or attribute
information of the videos. As Figure 1 shows, CLIP4Hashing sig-
nificantly outperforms existing state-of-the-art hashing methods.

The key contributions of this work include:
• CLIP4Hashing is the first approach employing the CLIP
features for video-text hashing for retrieval. This allows us
to introduce a hashing model that consists of only a single
hashing network and thus naturally mitigates the difficulty
in bridging different modalities.

• We propose dynamic weighting for conditioning the affinity
matrix for better learning and a parameter-free min-max
hashing layer for generating binary codes, both boosting the
performance of the approach.

• Our approach significantly outperforms existing hashing
methods on three video-text benchmarks, establishing new
state-of-the-art results. Furthermore, it even has competitive
performance compared with non-hashing methods when the
bit size is large.

2 RELATEDWORK
Cross-modal hashing methods often focus on projecting data from
different modalities into a common Hamming space to learn binary
codes. Moreover, the paired instances should be close to each other
in the learned Hamming space compared with the unpaired ones.

Most of the current research focuses on image-text retrieval
tasks where the tags or labels are often utilized in the text modality.
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Table 1: MSRVTT results of different methods. Notes: * indicates the methods are non-hashing methods and all hashing
methods are trained with same features from the pre-trained CLIP model.

Method name bit size Text-to-video retrieval Video-to-text retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ R@1↑ R@5 ↑ R@10↑ MdR ↓

CE (2019) [19] * 20.9 48.8 62.4 6 20.6 50.3 64.0 5.3
MMT (2020) [7] * 24.4 56.0 67.8 4 24.6 54.0 67.1 4

ClipBERT 8 × 2 (2021) [12] * 22.0 46.8 59.9 6 - - - -
SUPPORT-SET (2021) [22] * 26.6 55.1 67.5 3 27.4 56.3 67.7 3

HiT (2021) [16] * 28.8 60.3 72.3 3 27.7 59.2 72.0 3
Pre-trained CLIP model (2021) [24] * 30.7 53.1 62.6 5 26.0 51.7 62.4 5

S2Bin (with attributes) [23] 256 7.9 22.5 32.3 31 - - - -

DJSRH (2019) [32]

256 2.7 9.5 14.8 96 2.6 9.0 14.2 81
512 3.5 11.3 17.1 98 3.3 10.5 16.7 98
1024 5.4 16.2 23.0 57 5.4 16.8 23.9 57
2048 7.5 20.0 28.2 46 7.0 19.8 28.9 46

JDSH (2020) [17]

256 1.9 8.7 17.1 49 2.1 8.0 14.8 54
512 3.5 13.3 23.1 37 3.2 12.1 20.7 42
1024 5.4 16.0 26.6 30 4.1 14.6 23.8 33
2048 6.4 19.6 30.4 25 6.2 17.8 26.6 31

DGCPN (2021) [37]

256 2.1 8.5 15.9 71 2.1 8.2 14.1 79
512 3.5 11.7 18.4 100 4.1 13.1 20.0 78
1024 5.6 19.3 29.1 38 6.1 18.2 26.9 41
2048 8.4 23.2 34.7 27 7.6 22.9 32.5 28

CLIP4Hashing

256 14.9 27.4 33.5 34 14.7 27.4 33.7 33
512 22.5 39.7 47.8 13 22.7 37.4 47.3 13
1024 32.3 52.1 61.3 5 32.9 51.5 59.7 5
2048 37.6 56.9 66.3 3 37.0 58.3 66.0 3

Deng et al. [4] proposed the triplet-based hashing model that uti-
lizes the triplet labels to capture the semantic correlations between
image and text. Su et al. [32] proposed DJSRH, which constructs
a joint-semantics similarity matrix to learn the Hamming space
in order to reconstruct the joint-semantic relations. The authors
of [17] proposed a strategy termed JDSH for cross-modal retrieval,
which unfortunately needs global hyper-parameters based on the
statistics of the dataset. Scalable Discrete Matrix Factorization Hash-
ing (SCRATCH) [3] utilizes matrix factorization to learn the latent
binary representation of labels and features. UCH [13] coupled
the GAN to build two cycled networks for learning the hashing.
The outer network learns common representations and the inner
network generates the binary codes. The work in [6] proposed a
method named MSFH that learns the hashing by preserving the
topology of the original data with the help of matrix decomposition.
Unsupervised Knowledge Distillation (UKD) was introduced in [9].
It uses the output from an unsupervised teacher-student optimiza-
tion method to guide supervised hashing learning. Xie et al. [35]
developed a deep hashing approach (CPAH) to maintain the seman-
tic relationship between different modalities. It consists of a refined
module and a multi-task adversarial learning module. The method
DGCPN [37] is a deep graph-neighbor coherence preserving net-
work, which exploits three types of data similarities. However, it
requires the whole global information of dataset to build the affinity

matrix based on the K-nearest neighbors. All these recent cross-
modal hashing works are designed for image-text retrieval and
cannot be readily adopted into the video-text domain.

Some research works focusing on the video-text domain have
been published in recent years. Qi et al. designed a framework
named S2Bin [23], considering the spatial-temporal context of the
video data and the semantic relationships among data in different
modalities. Nevertheless, it requires video action proposals and
the attributes for further guidance. Jin et al. [11] proposed a deep
semantic multi-modal hashing network, which contains two sets
of modality-specific hashing functions to preserve the semantic
information of both inter-modalities and intra-modalities. However,
it is trained in a supervised fashion. Supervised learning for hashing
has the potential disadvantage of leading to a classification-like
task [5, 15] where significant collision of hashing codes would occur.
CLIP4Hashing avoids this issue by not requiring any category or
label information.

3 APPROACH
We first introduce the notations. The𝑚 variable denotes the batch
size andO = {𝑜1, 𝑜2, ..., 𝑜𝑚} is the𝑚 training instances in each batch.
V and T represent the videos and texts respectively. The features of
videos and texts are extracted by the CLIP model. They are denoted
as F𝑉 = [𝑓 1𝑣 , 𝑓 2𝑣 , ..., 𝑓𝑚𝑣 ] ∈ R𝑚×𝑑 and F𝑇 = [𝑓 1𝑡 , 𝑓 2𝑡 , ..., 𝑓𝑚𝑡 ] ∈ R𝑚×𝑑 ,
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Table 2: DeDiMo results of different methods. Notes: * indicates the methods are non-hashing methods and all hashing methods
are trained with same features from the pre-trained CLIP model.

Method name bit size Text-to-video retrieval Video-to-text retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ R@1↑ R@5 ↑ R@10↑ MdR ↓

FSE (2018) [39] * 13.9 36.0 - 11 - - - -
CE (2019) [19] * 16.1 41.1 - 8.3 15.6 40.9 - 8.2

ClipBERT 8 × 2 (2021) [12] * 20.4 48.0 60.8 6 - - - -
Pre-trained CLIP model (2021) [24] * 29.4 53.3 64.7 4 20.1 47.7 58.1 6

DJSRH (2019) [32]

256 4.3 12.2 19.2 46 3.2 10.6 17.1 67
512 7.4 18.7 27.2 44 6.4 17.9 26.8 40
1024 9.1 22.2 31.7 30 8.2 21.7 30.1 31.5
2048 12.8 29.4 40.8 19 9.9 25.5 34.7 24

JDSH (2020) [17]

256 1.9 10.1 17.9 37 2.1 9.4 17.2 44
512 4.8 16.2 25.7 30 3.8 15.1 25.5 34.5
1024 6.7 21.4 32.0 23 5.7 19.8 29.4 28
2048 7.4 22.0 33.1 22 7.1 20.8 31.6 26

DGCPN (2021) [37]

256 2.5 10.0 16.9 97 3.0 10.5 17.2 89
512 4.4 13.2 21.7 74 5.2 14.3 20.7 85
1024 7.0 19.4 29.4 34 7.7 20.9 29.8 33.5
2048 8.9 24.2 33.5 28 8.7 23.9 35.8 26

CLIP4Hashing

256 14.2 26.4 33.8 37 14.0 27.4 35.5 38
512 23.6 39.6 49.0 11 23.6 39.8 48.0 12
1024 32.7 51.6 60.6 5 30.3 50.4 56.2 5
2048 37.1 58.8 67.4 3 36.8 57.1 67.7 3

where 𝑑 (512 in our paper) is the dimension of the extracted feature
from the pre-trained CLIP model. A HashNet, a multi-layer per-
ceptron (MLP), is employed to produce the latent feature. The out-
puts of the HashNet are denoted as H𝑉 = [ℎ1𝑣, ℎ2𝑣, ..., ℎ𝑚𝑣 ] ∈ R𝑚×𝑍

and H𝑇 = [ℎ1𝑡 , ℎ2𝑡 , ..., ℎ𝑚𝑡 ] ∈ R𝑚×𝑍 , corresponding to the input
F𝑉 and F𝑇 , where the 𝑍 is the target encoding bit size. The bi-
nary codes can be obtained as B𝑉 = [𝑏1𝑣, 𝑏2𝑣, ..., 𝑏𝑚𝑣 ] ∈ {−1, +1}𝑚×𝑍

and B𝑇 = [𝑏1𝑡 , 𝑏2𝑡 , ..., 𝑏𝑚𝑡 ] ∈ {−1, +1}𝑚×𝑍 from the H𝑉 and H𝑇 re-
spectively by our designed min-max hashing layer, which will be
introduced in section 3.4.

The overall framework of CLIP4Hashing is shown in Figure 2.
As illustrated in the figure, the pre-trained CLIP model is first used
to extract the video and text features. One branch of processing uses
the extracted features to construct the affinity matrix S. Another
branch feeds the extracted features to the HashNet to generate
latent features that are then associated with the affinity matrix in
loss computation, which in turn guides HashNet learning. The min-
max hashing layer generates the binary codes from the outputs
of the HashNet. Details of these modules are elaborated in the
following subsections.

3.1 Hashing Using a Single Unified Model
Most prior efforts [17, 32, 37] adopted a dual-encoder architecture
for processing visual and textual inputs separately. Recent stud-
ies [28, 31, 33] have demonstrated that retrieval in a single domain

has advantages and improved performance. Some cross-modal re-
trieval works [10, 20, 24, 29] focus on building one common seman-
tic space for different modalities. Hence, in this work, we seek a
well-defined semantic space onto which both visual and textual fea-
tures can be projected and unified in the same domain. We choose
the CLIP model [24] as the building block, which provides a seman-
tic space constructed by training with over 400 million image-text
pairs. Under this model, the extracted video and text features can
be viewed as semantic vectors in the same domain, and thus we
treat the cross-modal hashing problem similar to single-modality
hashing, relying on the semantic relations of the feature vectors to
capture the cross-modal information.

Similar to previous work [26, 32, 34, 40], we use the pre-trained
features as inputs to our model. Following [32, 34], a three-layer
MLP is used as the HashNet to obtainH𝑉 andH𝑇 , which are used in
conjunction with the affinity matrix in generating losses for guiding
the training of the HashNet (see section 3.3). H𝑉 and H𝑇 are fed
to the min-max hashing layer (to be discussed in section 3.4) to
produce the binary codes B𝑉 and B𝑇 . This single hashing module is
termed as SHM in further discussion, which is shown as the purple
dashed circle in Figure 2.

To illustrate the benefits of utilizing a single hashing network
over the dual-network structure, the performance of these two
structures on the MSRVTT dataset with 1024 bit size are shown in
the first two rows of Table 4. The activation function of the SHM
module is replaced by Tanh for a fair comparison with the dual
network structure like [31]. More details can be found in section 4.5.
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Table 3: MSVD results of different methods. Notes: * indicates the methods are non-hashing methods and all hashing methods
are trained with same features from the pre-trained CLIP model.

Method name bit size Text-to-video retrieval Video-to-text retrieval
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ R@1↑ R@5 ↑ R@10↑ MdR ↓

CE (2019) [19] * 19.8 49.0 63.8 6 - - - -
SUPPORT-SET (2021) [22] * 23.0 52.8 65.8 5 27.3 50.7 60.8 5

Pre-trained CLIP model (2021) [24] * 43.9 72.1 81.3 2 43.5 75.4 85 2

DJSRH (2019) [32]

256 5.3 15.2 22.8 47 5.3 14.5 21.2 49
512 9.2 23.9 34.7 22 6.9 20.2 28.7 29
1024 12.6 31.3 44.4 15 9.8 24.6 34.3 25
2048 18.2 40.3 52.4 9 9.6 28.8 41.5 16.5

JDSH (2020) [17]

256 6.5 20.3 31.4 25 6.2 21.5 32.7 25
512 8.9 25.4 37.7 18 9.2 27.0 35.5 20
1024 11.4 32.0 43.9 15 10.4 28.6 39.6 18
2048 11.7 31.5 43.5 15 9.4 30.0 39.9 17

DGCPN (2021) [37]

256 8.8 25.5 35.5 22 9.2 24.8 35.8 21
512 13.2 34.0 46 13 14.5 36.6 48.7 11
1024 16.7 39.6 51 10 17.5 41.5 53.5 8
2048 19.2 44.1 54.9 8 20.7 43.7 57.3 7

CLIP4Hashing

256 34.4 52.4 61.9 5 35.2 53.9 62.9 5
512 45.5 66.2 77.0 2 49.5 73.4 82.0 2
1024 52.4 73.5 82.9 1 52.7 77.2 83.9 1
2048 54.5 78.2 87.3 1 54.5 78.8 87.1 1

3.2 Constructing Cross-Modal Affinity Matrix
with Dynamic Weighting

For each instance pair, the visual and textual features (FV and FT)
are extracted by CLIP dual-encoders. Besides, for each video, mean-
pooling frame fusion is used to combine per-frame features into a
single feature vector 𝑓𝑣 .

To construct the cross-modal affinity matrix, the cross-modal
cosine similarity matrices are first calculated as:

S𝑉𝑇 = 𝑑𝑐𝑜𝑠 (F𝑉 , F𝑇 ) = F̂𝑉 F̂⊤𝑇 (1)

S𝑇𝑉 = 𝑑𝑐𝑜𝑠 (F𝑇 , F𝑉 ) = F̂𝑇 F̂⊤𝑉 (2)
where S𝑉𝑇 ∈ [0, 1]𝑚×𝑚 and S𝑇𝑉 ∈ [0, 1]𝑚×𝑚 , and 𝑑𝑐𝑜𝑠 denotes
the cosine similarity. F̂ represents the normalized features from the
original F.

Next, all diagonal elements of S𝑉𝑇 and S𝑇𝑉 are set to 1 because
the paired video and text should be closest to each other. In the pre-
defined semantic space, even though the diagonal values are more
significant than other values in the original similarity matrices,
they hardly reach 1 since the features from different modalities in
the common semantic space are generally not the same.

Lastly, we use the average of the S𝑉𝑇 and S𝑇𝑉 to form the cross-
modal affinity matrix:

S𝑐 =
(S𝑉𝑇 + S𝑇𝑉 )

2
(3)

This also makes S𝑐 symmetric, similar to the case in the single
modality. For simplicity, we refer to the model based on this affinity
matrix S𝑐 as CLIPbase.

For the above affinity matrix S𝑐 , one observation is that the dis-
tances between unpaired instances are not well separated. One
reason is that the features are learned by contrastive learning with
enormous amount of data, which causes the learned distances of
unpaired instances to stay in a small range. Previous hashing meth-
ods [17, 32, 37] only paid attention to the diagonal values in the
affinity matrix, which means they are concerned more with the
paired video-text relationships. But the unpaired video-text rela-
tions should not be ignored during hashing learning. Therefore, we
design a remapping procedure to make the affinity matrix entries
more distinctive by strengthening the off-diagonal values in the
affinity matrix (which reflect relative relations between unpaired
video-texts). This is inspired by the “histogram equalization" idea
that effectively improves contrast by flattening the distribution of
the entries. Specifically, starting with Eq. 3, a few more steps are
taken to acquire the new weighted affinity matrix S.

Firstly, we acquire the mean, min, and max values of S𝑐 (denoted
as 𝑠mean, 𝑠min and 𝑠max) in each batch. Then each element 𝑠𝑖, 𝑗 is
determined to have either a “dissimilar pair" or a “similar pair"
status, by comparing against 𝑠mean. The affinity matrix is weighted
element-wise adaptively according to the status of the elements.
The re-weighted 𝑠𝑖, 𝑗 is represented as 𝑠𝑖, 𝑗 as following:

𝑠𝑖, 𝑗 =

{
𝑊 −𝑠𝑖, 𝑗 , if 𝑠𝑖, 𝑗 ≤ 𝑠mean
𝑊 +𝑠𝑖, 𝑗 , if 𝑠𝑖, 𝑗 > 𝑠mean

(4)

where weights𝑊 − and𝑊 + are computed by:

𝑊 − = exp(−1
2
×

𝑠mean − 𝑠𝑖, 𝑗

𝑠mean − 𝑠min
− 1
2
) (5)
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𝑊 + = exp( 1
2
×

𝑠𝑖, 𝑗 − 𝑠mean
𝑠max − 𝑠mean

− 1
2
) (6)

with𝑊 − and𝑊 + representing the weights for the “dissimilar pair"
or “similar pair" respectively.

Such weights “stretch" the original elements non-linearly. The
− 1
2 term in Eq. 5 and 6 is for normalizing the re-weighted affinity

matrix to stay within [0, 1]. This dynamic weighting step equalizes
the distribution of the distances, making them more discriminative,
which is helpful to hashing learning.

Finally, the new cross-modal affinity matrix can be formed as
S = {𝑠𝑖, 𝑗 }𝑚𝑖=1, 𝑗=1. For reference in the ablation study, the dynamic
weighting step is termed as DW in the following sections. The
entire process of constructing the affinity matrix with dynamic
weighting is shown as the blue dashed rectangle in Figure 2.

3.3 Losses for Preserving Cross-Modal
Similarity

To preserve the relationships between different modalities, three
losses are proposed for the learning stage: the intra- and inter-modal
similarity preserving losses and the consistency preserving loss. All
the losses are computed based on the similarity matrix constructed
by the output features before the min-max hashing layer. The intra-
modal similarity is calculated as cos (H𝑉 ,H𝑉 ) and cos (H𝑇 ,H𝑇 ).
The inter-modal similarity is acquired as cos (H𝑉 ,H𝑇 ). Therefore,
the intra- and inter-modality similarity preserving losses can be
calculated as:

L𝑖𝑛𝑡𝑟𝑎 = min
H𝑉 ,H𝑇

| |S − cos (H𝑉 ,H𝑉 ) | |2𝐹+

||S − cos (H𝑇 ,H𝑇 ) | |2𝐹
(7)

L𝑖𝑛𝑡𝑒𝑟 = min
H𝑉 ,H𝑇

| |S − cos (H𝑉 ,H𝑇 ) | |2𝐹+

||S − cos (H𝑇 ,H𝑉 ) | |2𝐹
(8)

where | |.| |2
𝐹
is the Frobenius norm. Moreover, depending on the

assumption that the cross-modal task can be regarded as the sin-
gle modal task, a consistency preserving loss is also proposed as
follows:

L𝑐𝑜𝑛 = min
H𝑉 ,H𝑇

| |H𝑉 − H𝑇 | |2𝐹 (9)

The model with this loss will be referred to as L𝑐𝑜𝑛 in short in
the following sections. Therefore, the designed model is trained to
minimize the following loss function:

L = 𝜆1L𝑖𝑛𝑡𝑟𝑎 + 𝜆2L𝑖𝑛𝑡𝑒𝑟 + 𝜆3L𝑐𝑜𝑛 (10)

where 𝜆1, 𝜆2, and 𝜆3 control the trade-off among the intra-modal,
inter-modal, and the consistency losses so that they all make com-
parable contributions. This hashing learning part is shown as red
dashed rectangle in Figure 2.

3.4 Min-Max Hashing Layer for Quantization
Some intuitive binarization methods, like Sign function or Tanh
function, are usually utilized for acquiring the binary codes. Addi-
tional loss terms based on binary codes are often added in training,
which requires careful hyper-parameters tuning in the objective
function. Therefore, these methods are sensitive to the choices of
hyper-parameters. Further, they typically cannot explicitly consider
the utilization of the Hamming space. A bi-half hashing layer was

proposed in [14] to tackle the above issues by maximizing the bit
entropy in the Hamming space. The bi-half hashing layer sorts all
the elements of each hidden feature along the batch dimension
and then assigns the top half of the elements to +1 and others to
−1. However, they neglected the fact that hidden feature elements
are not always evenly distributed in each dimension, which means
forcing values to be divided in half may not accurately represent
the learned distribution of the hidden feature components.

Due to these concerns, instead of using the above naive bina-
rization functions or the bi-half hashing layer, we design a more
flexible parameter-free hashing layer. This hashing layer, termed
as min-max hashing layer, does the following forward mapping:

B = 𝜋 (H) (11)

where theH is [𝐻1, 𝐻2, ..., 𝐻𝑍 ] ∈ R𝑚×𝑍 , and 𝜋 is the mapping plan.
Here𝐻𝑧 , 𝑧 = 1, 2, ..., 𝑍 , represents the 𝑧-th dimension of the learned
latent features in the batch. For each 𝐻𝑧 (𝑧 = 1, 2, ..., 𝑍 ), we first
find its max and min values (denoted as 𝐻𝑧

𝑚𝑎𝑥 and 𝐻𝑧
𝑚𝑖𝑛

). Then we
calculate the distances between each element and the maximum and
minimum values (denoted as 𝑑𝑧𝑚𝑎𝑥 and 𝑑𝑧

𝑚𝑖𝑛
). Finally, the elements

are assigned to +1 if they are close to 𝐻𝑧
𝑚𝑎𝑥 , and −1 otherwise:

𝜋 (𝐻𝑧) =
{

+1, 𝑑𝑧𝑚𝑎𝑥 ≤ 𝑑𝑧
𝑚𝑖𝑛

−1, 𝑑𝑧𝑚𝑎𝑥 > 𝑑𝑧
𝑚𝑖𝑛

(12)

To illustrate the advantages of the min-max hashing layer, three
sample feature vectors 𝑎, 𝑏 and 𝑐 are shown in Figure 3 as an ex-
ample. In the feature space, the cosine similarity between 𝑏 and 𝑎
is 0.998, and the cosine similarity between 𝑏 and 𝑐 is 0.874. Thus,
the binary code of 𝑏 should be more similar to 𝑎 than 𝑐 due to the
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Figure 3: Illustrating comparison of different hashing layers.
The features of sample 𝑎 are in blue, 𝑏 in yellow, 𝑐 in green.
The difference in binary codes of Bi-Half andMin-Max layers
is highlighted in red.
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difference in the 3-rd dimension of feature. Either Sign function or
bi-half hashing layer could not preserve their relative relationships
in the latent feature space. However, our min-max hashing layer
can group the features with a dynamic threshold based on local sta-
tistics, better than forcibly assigning half +1 and −1 (bi-half layer)
or by threshold 0 (Sign). The Min-Max Hashing module is termed
MMH in the following sections for reference, which is shown as
the pink dashed circle in Figure 2.

4 EXPERIMENTS
To evaluate the CLIP4Hashing approach, we conduct experiments
on three video-text benchmark datasets: MSRVTT [36], DiDeMo [1],
and MSVD [2] datasets.

4.1 Datasets and Evaluation Metrics
MSRVTT [36] is a large-scale video-text dataset that consists of
10,000 video clips with 20 captions for each one. The average video
length is 15 seconds with a 30fps frame rate. Our model is trained
by following the settings in [7, 38], and we report the results on
the 1K-A test set [38].

DiDeMo [1] is a video-text dataset contains about 10K videos
and 4 descriptions for each video. The average video length is about
30 seconds with a 30fps frame rate. Following [12, 19, 39], we use
the same train/test split and concatenate all captions to form a
longer sentence retrieval.

MSVD [2] contains 1970 videos in total and about 40 captions
are associated with each video clip. The dataset is split into train,
validation, and test sets with 1200, 100, and 670 videos. For the
testing stage, we fixed the selection of the fifth captions among
the 40 captions for the video-to-text retrieval evaluation (i.e., the
video-to-text is one-to-one retrieval).

4.2 Implementations Details
The pre-trained CLIP (ViT-B/32) model is utilized for feature extrac-
tion and is not updated during training. For each video, 6 frames
for MSVD, 12 frames for MSRVTT, and 24 frames for DiDeMo are
uniformly selected. The training epoch is 200, the batch size is 16,
and the initial learning rate is 0.01. The learning rate is decreased
by a factor of 0.1 at the 150th epochs. The SGD optimizer is em-
ployed with 0.9 momentum and 0.0005 weight decay. The trade-off
values are set as 𝜆1 = 0.1, 𝜆2 = 1, 𝜆3 = 2 to make those three losses
are with similar magnitude. The method is implemented with the
PyTorch [21] and trained on the NVIDIA V100 GPU.

4.3 Compared Baseline Methods
Four unsupervised deep hashing algorithms,DJSRH [32], JDSH [17],
DGCPN [37], and S2Bin [23] are included in the evaluation to com-
pare with our proposed CLIP4Hashing. These four deep hashing
algorithms leverage the similarity/affinity matrix as the guidance
in learning, yet each involves several empirical hyper-parameters.
To gain a better grasp of these reference hashing networks, please
refer to the original papers. For S2Bin [23], we only quote the
performance of theMSRVTT on text-to-video retrieval since the
splitting strategy for video-to-text testing dataset is different.

Several state-of-the-art non-hashing video-text retrieval meth-
ods, includingMMT [7],ClipBERT [12],HiT [16],CE [19], FSE [39],

SUPPORT-SET [22], and the zero-shot learning of the original
CLIP model [24], are utilized as comparison with CLIP4Hashing
as well. The performance of those methods is quoted directly from
the corresponding papers. Moreover, the evaluation metric of non-
hashing methods is based on cosine similarity, while the hashing
ones is based on Hamming distance.

4.4 Performance Comparison and Analysis
For a fair comparison, the same extracted features from the pre-
trained CLIP model are provided as the input for all the compared
hashing methods. The average recall at different K (R@1, R@5, and
R@10) andmedian rank (MdR) are used to evaluate the performance
of all the methods. The bit sizes 256, 512, 1024, 2048 are used since
larger bit sizes (like 256 or bigger) are more suitable for maintaining
the semantic information for video clips and have been reported
to achieve good performance in recent video hashing works [23,
27, 30]. Small bit sizes (e.g., 128 or smaller) can also be employed
with our model. However, too compact binary codes will make the
well-defined semantic space collapse and the performance will drop
catastrophically. Therefore, the bit size selection can be a trade-off
between performance and efficiency.

The results onMSRVTT, DiDeMo, andMSVD datasets are shown
in Tables 1 to 3. Our approach achieves the best performance com-
pared with other hashing methods. With the increase of bit size, the
performance of our CLIP4Hashing improves more significantly
than others. Moreover, with a large bit size (e.g., the case of 2048),
CLIP4Hashing achieved competitive performance compared with
some non-hashing based video-text retrieval methods. In addition,
the performance of other unsupervised hashing-based methods
demonstrates that the simple adoption of image-text retrieval meth-
ods cannot have satisfactory results in the video-text domain.

In Figure 4, we show an illustration of the R@5 results of the
designed method and DJSRH on the query text “a cat is playing
and playing a turtle" from the MSVD dataset. The green bounding
box stands for the correctly retrieved data, while the red represents
incorrect data samples. CLIP4Hashing can retrieve the correct
video at the top one from the testing split of theMSVD dataset. Com-
pared with CLIP4Hashing, even though DJSRH can capture the
information of the “cat" and “playing", it misses the information of
“playing a turtle", which results in the degradation of performance.

Figure 4: Illustrating results of (a) CLIP4Hashing vs (b)
DJSRH on the Query Text: “A Cat is Playing and Playing
a Turtle".
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Table 4: Ablation Study of different modules on CLIP4Hashing (MSRVTT dataset, 1024 bit size).

Module names Text-to-video retrieval Video-to-text retrieval
CLIPbase SHM DW MMH L𝑐𝑜𝑛 R@1 ↑ R@5↑ R@10↑ MdR↓ R@1 ↑ R@5↑ R@10↑ MdR↓
✓ 8.6 22.6 29.8 39 7.0 20.1 28.0 53
✓ ✓ 11.7 27.7 37.1 23 11.5 28.1 38.2 22
✓ ✓ ✓ 14.6 32.9 41.5 18 13.9 32.3 42.0 18
✓ ✓ ✓ ✓ 31.0 50.7 58.6 5 32.7 50.8 59.2 5
✓ ✓ ✓ ✓ ✓ 32.3 52.1 61.3 5 32.9 51.5 59.7 5

Table 5: Comparison of bi-half and min-max hashing layer
on CLIP4Hashing (MSRVTT dataset, 1024 bit size).

Module name Text-to-video retrieval
R@1 ↑ R@5↑ R@10↑ MdR↓

CLIP4Hashing with bi-half 20.0 38.3 47.2 14
CLIP4Hashing with min-max 32.3 52.1 61.3 5

Table 6: Comparison of DW, MMH and L𝑐𝑜𝑛 modules on
DJSRH (MSRVTT dataset, 1024 bit size).

Method Text-to-video retrieval
R@1 ↑ R@5↑ R@10↑ MdR↓

DJSRH 5.4 16.2 23 57
DJSRH with DW 7.6 22.0 32.8 32
DJSRH with MMH 14.8 30.5 40.3 20
DJSRH with L𝑐𝑜𝑛 7.5 22.7 31.3 34.5

4.5 Ablation Study
To comprehensively analyze the impact of all designed modules in
our framework, we present in Table 4 the results on the MSRVTT
dataset with the 1024-bit setting. It is easy to observe that the
single hashing module (SHM) boosts the performance with our
proposed affinity matrix S (CLIPbase) by more than 3% for the
R@1 metric. Therefore, we evaluate other modules based on the
structure of CLIPbase+SHM to make the evaluation more distinct.
From the second and third rows, we can find that the dynamic
weighting (DW) process can improve over CLIPbase+SHM as well.
Furthermore, the min-max hashing layer (MMH) improves the
performance along with the proposed affinity matrix. The last row
shows the consistency preserving loss term L𝑐𝑜𝑛 enhances the
performance of the R@1metric and reduces the differences between
text-to-video and video-to-text retrieval tasks. From all the rows
in Table 4, it is evident that each of our proposed modules helps
improving the performance, and together they deliver a remarkable
performance boost.

In addition, we compare the bi-half hashing layer with our min-
max hashing layer within CLIP4Hashing. Table 5 shows that the
min-max hashing layer design outperforms the bi-half hashing
layer since it can better preserve the semantic relationships. We
also applied the designed DW, MMH and L𝑐𝑜𝑛 modules in other

method like DJSRH. Table 6 shows that either dynamic weighting,
min-max hashing layer or consistency preserving loss designs can
boost the performance even on other hashing methods.

4.6 Hashing Codes Efficiency Analysis
As shown in Tables 1-3 and Figure 1, CLIP4Hashing will be im-
proved with a larger bit size. However, a larger bit size requires
more memory storage and computation time. Even though usage
of a 2048 bit size in our approach still saves roughly 87.5% storage
space compared to the CLIP feature, which has a dimension of 512
for each vector. Moreover, for the search speed, the bit-wise logic
operation for hashing-based methods is much faster than the ma-
trix multiplication of the non-hashing methods. For the 1 million
number of our 2048 bit hashing codes and the CLIP feature vectors,
a rough similarity computation time estimate is 4.3 seconds against
156.9 seconds. Thus, even with 2048 bit size, the hashing-based
codes are still able to save around 97% searching time.

5 CONCLUSION
In this paper, we propose a novel unsupervised deep hashing ap-
proach named CLIP4Hashing for video-text retrieval. To our best
knowledge, it is the first approach utilizing the CLIP model for
video-text hashing with a single hashing network. Two parameter-
free modules, dynamic weighting and min-max hashing layer, are
designed, which help drastically boost the performance of the
framework. Extensive experiments demonstrate CLIP4Hashing
outperforms existing unsupervised hashingmethods on three video-
text benchmarks, establishing new performance records on these
datasets. With a larger bit size like 2048, CLIP4Hashing even
has competitive performance compared with non-hashing-based
methods.

ACKNOWLEDGMENTS
Y.Zhuo and B.Li were supported in part by an ONR grant (# N00014-
19-1-2119). Any opinions expressed in this material are those of the
authors and do not necessarily reflect the views of ONR.

REFERENCES
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,

and Bryan Russell. 2017. Localizing moments in video with natural language. In
Proceedings of the IEEE international conference on computer vision. 5803–5812.

[2] David Chen and William B Dolan. 2011. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of the 49th annual meeting of the association
for computational linguistics: human language technologies. 190–200.

[3] Zhen-Duo Chen, Chuan-Xiang Li, Xin Luo, Liqiang Nie, Wei Zhang, and Xin-
Shun Xu. 2019. SCRATCH: A scalable discrete matrix factorization hashing

Session 2A: Visual+Text Retrieval  ICMR ’22, June 27–30, 2022, Newark, NJ, USA.

165



framework for cross-modal retrieval. IEEE Transactions on Circuits and Systems
for Video Technology 30, 7 (2019), 2262–2275.

[4] Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and Dacheng Tao. 2018.
Triplet-based deep hashing network for cross-modal retrieval. IEEE Transactions
on Image Processing 27, 8 (2018), 3893–3903.

[5] Pak Lun Kevin Ding, Yikang Li, and Baoxin Li. 2018. Mean local group average
precision (mLGAP): a new performance metric for hashing-based retrieval. arXiv
preprint arXiv:1811.09763 (2018).

[6] Yixian Fang, Huaxiang Zhang, and Yuwei Ren. 2019. Unsupervised cross-modal
retrieval viaMulti-modal graph regularized SmoothMatrix FactorizationHashing.
Knowledge-Based Systems 171 (2019), 69–80. https://doi.org/10.1016/j.knosys.
2019.02.004

[7] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. 2020. Multi-
modal transformer for video retrieval. In European Conference on Computer Vision.
Springer, 214–229.

[8] Vijetha Gattupalli, Yaoxin Zhuo, and Baoxin Li. 2019. Weakly supervised deep
image hashing through tag embeddings. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10375–10384.

[9] Hengtong Hu, Lingxi Xie, Richang Hong, and Qi Tian. 2020. Creating something
from nothing: Unsupervised knowledge distillation for cross-modal hashing. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3123–3132.

[10] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le,
Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021. Scaling up visual and vision-
language representation learning with noisy text supervision. In International
Conference on Machine Learning. PMLR, 4904–4916.

[11] Lu Jin, Zechao Li, and Jinhui Tang. 2020. Deep semantic multimodal hashing
network for scalable image-text and video-text retrievals. IEEE Transactions on
Neural Networks and Learning Systems (2020).

[12] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and
Jingjing Liu. 2021. Less is more: Clipbert for video-and-language learning via
sparse sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 7331–7341.

[13] Chao Li, Cheng Deng, Lei Wang, De Xie, and Xianglong Liu. 2019. Coupled
cyclegan: Unsupervised hashing network for cross-modal retrieval. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 176–183.

[14] Yunqiang Li and Jan van Gemert. 2021. Deep Unsupervised Image Hashing
by Maximizing Bit Entropy. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 2002–2010.

[15] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep super-
vised hashing for fast image retrieval. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2064–2072.

[16] Song Liu, Haoqi Fan, Shengsheng Qian, Yiru Chen, Wenkui Ding, and Zhongyuan
Wang. 2021. HiT: Hierarchical Transformer With Momentum Contrast for Video-
Text Retrieval. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). 11915–11925.

[17] Song Liu, Shengsheng Qian, Yang Guan, Jiawei Zhan, and Long Ying. 2020.
Joint-Modal Distribution-Based Similarity Hashing for Large-Scale Unsupervised
Deep Cross-Modal Retrieval. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. Association for
Computing Machinery, New York, NY, USA, 1379–1388. https://doi.org/10.1145/
3397271.3401086

[18] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-
pervised hashing with kernels. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2074–2081.

[19] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. 2019. Use
What You Have: Video retrieval using representations from collaborative experts.
In Proceedings of the British Machine Vision Conference (BMVC), Kirill Sidorov
and Yulia Hicks (Eds.). BMVA Press, Article 73, 14 pages. https://doi.org/10.5244/
C.33.73

[20] Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. 2021. SLIP: Self-
supervision meets Language-Image Pre-training. arXiv preprint arXiv:2112.12750
(2021).

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[22] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian Metze, Alexander G Haupt-
mann, Joao F. Henriques, and Andrea Vedaldi. 2021. Support-set bottlenecks
for video-text representation learning. In International Conference on Learning
Representations. https://openreview.net/forum?id=EqoXe2zmhrh

[23] Mengshi Qi, Jie Qin, Yi Yang, Yunhong Wang, and Jiebo Luo. 2021. Semantics-
Aware Spatial-Temporal Binaries for Cross-Modal Video Retrieval. IEEE Transac-
tions on Image Processing 30 (2021), 2989–3004.

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

[25] Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert R.G.
Lanckriet, Roger Levy, and Nuno Vasconcelos. 2010. A New Approach to Cross-
Modal Multimedia Retrieval. In Proceedings of the 18th ACM International Confer-
ence on Multimedia (Firenze, Italy) (MM ’10). Association for Computing Machin-
ery, New York, NY, USA, 251–260. https://doi.org/10.1145/1873951.1873987

[26] Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao Shen. 2018.
Unsupervised deep hashing with similarity-adaptive and discrete optimization.
IEEE transactions on pattern analysis and machine intelligence 40, 12 (2018), 3034–
3044.

[27] Ling Shen, Richang Hong, Haoran Zhang, Xinmei Tian, and Meng Wang. 2019.
Video Retrieval with Similarity-Preserving Deep Temporal Hashing. ACM Trans.
Multimedia Comput. Commun. Appl. 15, 4, Article 109 (dec 2019), 16 pages. https:
//doi.org/10.1145/3356316

[28] Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu, Li Liu, Fan Zhu, Fumin Shen,
and Ling Shao. 2020. Auto-encoding twin-bottleneck hashing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2818–2827.

[29] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Woj-
ciech Galuba, Marcus Rohrbach, and Douwe Kiela. 2021. FLAVA: A Foundational
Language And Vision Alignment Model. arXiv preprint arXiv:2112.04482 (2021).

[30] Jingkuan Song, Hanwang Zhang, Xiangpeng Li, Lianli Gao, Meng Wang, and
Richang Hong. 2018. Self-supervised video hashing with hierarchical binary
auto-encoder. IEEE Transactions on Image Processing 27, 7 (2018), 3210–3221.

[31] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. 2018. Greedy
Hash: Towards Fast Optimization for Accurate Hash Coding in CNN. In
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
13f3cf8c531952d72e5847c4183e6910-Paper.pdf

[32] Shupeng Su, Zhisheng Zhong, and Chao Zhang. 2019. Deep joint-semantics
reconstructing hashing for large-scale unsupervised cross-modal retrieval. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 3027–
3035.

[33] Ruikui Wang, Ruiping Wang, Shishi Qiao, Shiguang Shan, and Xilin Chen. 2020.
Deep position-aware hashing for semantic continuous image retrieval. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2493–2502.

[34] Gengshen Wu, Zijia Lin, Jungong Han, Li Liu, Guiguang Ding, Baochang Zhang,
and Jialie Shen. 2018. Unsupervised Deep Hashing via Binary Latent Factor
Models for Large-scale Cross-modal Retrieval.. In IJCAI. 2854–2860.

[35] De Xie, Cheng Deng, Chao Li, Xianglong Liu, and Dacheng Tao. 2020. Multi-
task consistency-preserving adversarial hashing for cross-modal retrieval. IEEE
Transactions on Image Processing 29 (2020), 3626–3637.

[36] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5288–5296.

[37] Jun Yu, Hao Zhou, Yibing Zhan, and Dacheng Tao. 2021. Deep Graph-neighbor
Coherence Preserving Network for Unsupervised Cross-modal Hashing. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4626–4634.

[38] Youngjae Yu, Jongseok Kim, and Gunhee Kim. 2018. A joint sequence fusion
model for video question answering and retrieval. In Proceedings of the European
Conference on Computer Vision (ECCV). 471–487.

[39] Bowen Zhang, Hexiang Hu, and Fei Sha. 2018. Cross-modal and hierarchical
modeling of video and text. In Proceedings of the European Conference on Computer
Vision (ECCV). 374–390.

[40] Peng-Fei Zhang, Yadan Luo, Zi Huang, Xin-Shun Xu, and Jingkuan Song. 2021.
High-order nonlocal Hashing for unsupervised cross-modal retrieval. World
Wide Web 24, 2 (2021), 563–583.

Session 2A: Visual+Text Retrieval  ICMR ’22, June 27–30, 2022, Newark, NJ, USA.

166

https://doi.org/10.1016/j.knosys.2019.02.004
https://doi.org/10.1016/j.knosys.2019.02.004
https://doi.org/10.1145/3397271.3401086
https://doi.org/10.1145/3397271.3401086
https://doi.org/10.5244/C.33.73
https://doi.org/10.5244/C.33.73
https://openreview.net/forum?id=EqoXe2zmhrh
https://doi.org/10.1145/1873951.1873987
https://doi.org/10.1145/3356316
https://doi.org/10.1145/3356316
https://proceedings.neurips.cc/paper/2018/file/13f3cf8c531952d72e5847c4183e6910-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/13f3cf8c531952d72e5847c4183e6910-Paper.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Hashing Using a Single Unified Model
	3.2 Constructing Cross-Modal Affinity Matrix with Dynamic Weighting
	3.3 Losses for Preserving Cross-Modal Similarity
	3.4 Min-Max Hashing Layer for Quantization

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementations Details
	4.3 Compared Baseline Methods
	4.4 Performance Comparison and Analysis
	4.5 Ablation Study
	4.6 Hashing Codes Efficiency Analysis

	5 Conclusion
	Acknowledgments
	References



