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Abstract—Inspired by the selective attention mechanism in hu-
man vision, we propose to introduce a saliency-based processing
step in the CMOS image sensor, to continuously select pixels
corresponding to salient objects and feedback such information
to the sensor, instead of blindly passing all pixels to the sensor
output. To minimize the overhead of saliency detection in this
feedback loop, we propose two techniques: (1) saliency detection
with low-precision, down-sampled grayscale images, and (2)
Optimization of the loss function and model structure. Finally,
we pad the minimum number of pixels around the selected
pixels to maintain the accuracy of object detection (OD). Our
method is experimented with two types of OD algorithms on
three representative datasets. At the similar OD accuracy with the
full image, our proposed selective feedback method successfully
achieves 70.5% reduction in the volume of output pixels for
BDD100K, which translates to 4.3× and 3.4× reduction in power
consumption and latency, respectively.

Index Terms—selective attention, saliency detection, image
sensor, object detection, power consumption, latency

I. INTRODUCTION

The complexity and resolution of CMOS image sensors
are ever increasing, leading to larger data volume and higher
cost [1]. As shown in Fig. 1(a), current design separates the
pixel generation at the frontend and data processing off the
sensor, with a sequential path through the analog-to-digital
converter (ADC). With larger image size, such a design results
in longer output latency, lower throughput, and higher power
consumption, especially on the ADC.

In comparison, the human visual system employs the se-
lective attention mechanism to solve the fundamental conflict
between image size and throughput: it quickly scans the image,
localizes the region of interest depending on the context (i.e.,
saliency), and selectively outputs the salient pixels only [2],
[3]. Through selective attention, human vision dynamically
adjusts the region of interest, and minimizes the output data
volume without degrading the quality of further image analysis
(e.g., object detection from the selected pixels).

Inspired by this mechanism, we propose to introduce a
new feedback control on the image sensor, selective attention
(Fig. 1(b)), which will continuously detect the salient region,
feedback the selection to reduce the number of output pixels,
and in turn, enhance both the throughput and energy efficiency.
To meet the high-throughput demand by the sensor, we system-
atically reduce the complexity and output data volume through
selective attention achieved by the following steps:

(a) Conventional data flow of a CMOS image sensor.

(b) Proposed method to reduce the output data volume.

Fig. 1: Comparison of the feedforward flow in conventional sensors
and our proposed method of the feedback selection.

1) Input scaling: Instead of the full RGB image, we aggres-
sively scale down its size and precision for selection.

2) Algorithm optimization: Based on the U-Net model, we
significantly reduce its size and further adjust its loss
function to emphasize the coverage of object pixels.

3) Output padding: This guarantees the accuracy and ro-
bustness of object detection (OD) with selected pixels.

The proposed method is experimented on three datasets,
MSRA10K, COCO2017 and BDD100K, demonstrating sig-
nificant reduction in sensor output pixels while maintaining
similar OD accuracy for all datasets.

II. SELECTIVE ATTENTION

Selective attention shares a similar goal as saliency de-
tection. Yet it emphasizes more on the preservation of true
object pixels, rather than the separation between the object and
background pixels. Therefore, conventional saliency detection
algorithms, such as semantic segmentation or object detection
with the full image, are overly expensive for selective atten-
tion. In this section, we aggressively scale down the input
image and the selection model, under the constraint of the
OD accuracy post the selection. Fig. 2 presents the processing
flow, along with the pseudo-codes in Algorithm 1.
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Fig. 2: The processing flow of the selective attention module.

A. Scaling of Input Image

Since the target of selective attention is less strict than the
segmentation between the object and the background, it is
possible to reduce the precision and size of the input image
for efficient selection, with the tolerance of false object pixels.

Algorithm 1 Selective Attention

1: function Down− sample(x, r)
2: Rg, Gg, Bg = x[..., 0], x[..., 1], x[..., 2]
3: Rl, Gl, Bl = gammmaExpansion(Rg, Gg, Bg)
4: xHG = 0.2126Rl + 0.7152Gl + 0.0722Bl

5: max down-sample xHG to xLG with ratio r
6: return xLG

7: end function
8: Randomly initialize U-Net-Lite model parameters θ
9: for each epoch t = 1, 2, ... do

10: ILG = Downsample(IHC , r)
11: p = fθt(ILG)
12: L(θ) = −ylog(p)− β(1− y)log(1− p)
13: θt+1 = θt − α∇θL(θ)
14: end for
15: for each image I1, I2, ..., IK do
16: Mk

L = fθ(I
k) ▷ Generate the saliency map

17: Mk
H = upsample(Mk

L) ▷ Upsample the saliency map
18: Mk

P = padding(Mk
H) ▷ Pad the saliency map

19: IkS = IkHC ×Mk
P ▷ Select salient pixels

20: end for
21: Randomly initialize object detection model parameters θ′

22: for each epoch t = 1, 2, ... do
23: Update model θ′ with IS

24: end for
25: Output the prediction of object classes and bounding boxes

with trained model, and evaluate mAP

Grayscale Conversion: In the human visual system, the
chromatic information is sent to the parvocellular lateral
geniculate nucleus after an image is projected onto the retina,
while the achromatic portion is sent to the superior colliculus
for selective attention [3]. Based on this observation, we first
convert the RGB image (i.e., IHC) to the grayscale (i.e.,
IHG) to reduce the workload and precision. Similar to the
transformation in [2], [3], we use the following conversion to
preserve the original RGB information:

Cl =

{
Cg

12.92 Cg ≤ 0.04045

(
Cg+0.055

1.055 )2.4 Cg > 0.04045
(1)

IHG = 0.2126Rl + 0.7152Gl + 0.0722Bl (2)

where Cl denotes the linear RGB color values after gamma
expansion; Rl, Gl, Bl are red, green, and blue channel linear
values, respectively; Cg represents the gamma-compressed
IHC values, and IHG is the calculated grayscale value.

Down-sampling: For selective attention, high-resolution de-
tails, such as the texture and the exact shape, may not be
required to localize the salient pixels [2]. Therefore, we
propose to further transform the grayscale image (i.e., IHG)
to a lower-resolution grayscale image (i.e., ILG). Different
from that in [2], [3], we use max down-sampling to select the
maximum value as the down-sampled value. It has a lower cost
in implementation than other interpolation-based methods.

B. Algorithm Optimization

The scaling-down of the input image enables the simplifica-
tion of the neural network model for selective attention. At this
step, we start from one of the commonly used segmentation
models, U-Net [4], simplify its model structure under the
constraint of comparable Intersection-over-Union (IoU), and
further optimize its loss function to bias toward lower false
negative selection (i.e., increase the coverage of salient pixels).

Model simplification: The original U-Net consists of a
symmetrical encoder and decoder [4]. We use VGG13 as
the backbone of the encoder [5], and reduce the number of
channels and layers to build up our own U-Net-Lite. With the
down-sampled grayscale image as the input, we first reduce
the number of input channels of the first layer from three to
one. Then the maximum number of channels across all layers
is limited at 32. Finally, we experiment with fewer number of
convolutional layers until the degradation of IoU.

Loss function: The result of selective attention can be
evaluated by four categories: True Positive (TP) for correct
selection of object pixels, False Positive (FP) for false selection
of object pixels, False Negative (FN) for incorrect prediction
of background pixels, and True Negative (TN) for correct pre-
diction of background pixels. The quality of training depends
on the balance of these four metrics in the loss function. To
secure the selection of object pixels, we deliberately reduce
FN by using the weighted cross entropy for training:

L = −ylog(p)− β(1− y)log(1− p) (3)

where L is loss, y is the ground truth label, p is the prediction
and β is a parameter to adjust the importance of FN and TP,
e.g., a smaller β emphasizes more on FN and TP.

C. Padding of Selected Output

The simplification of the input image and the selection
algorithms inevitably cause information loss (e.g., loss of
object pixels), even though we carefully monitor the model
quality. Such loss results in the degradation of object detection
using the selected RGB pixels, as compared to OD with the
full RGB image. To compensate for that, we add a number of
pixels from the background to the object, along the border
of the selected region (i.e., padding), since the incorrect
selections happen mostly around the boundary between the
salient object and the background.
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In summary, these three steps aim to achieve efficient and
robust selection, with the minimum computation cost and
overhead in output pixels. The optimization of parameters in
each step are tuned on three datasets. The quality is monitored
by IoU in salient object detection, the accuracy of object
detection, and other metrics.

III. EXPERIMENTAL RESULTS

Three popular datasets are used in this study: MSRA10K
for salient object detection, COCO2017 [6] for image seg-
mentation, and BDD100K [7] for autonomous driving. The
optimization process is evaluated by multiple metrics, includ-
ing mean absolute error (MAE), true positive rate (TPR), F-
measure (e.g., F0.3), maxF, and IoU that is defined as:

IoU =
TP

TP + FN + FP
(4)

Besides these metrics for saliency detection, we further
evaluate the quality of object detection after padding, using
mean Average Precision (mAP) as the metric. The goal is
to minimize the output pixel volume after selective attention;
meanwhile, we should also achieve the minimal degradation of
mAP in object detection, with selected pixels plus the padding.

A. Image Scaling for Selective Attention

Table I evaluates selection attention with down-sampled,
grayscale images. The original U-Net is utilized to assess
the quality with various metrics. As compared to the original
RGB image, we observe that the dimension of the image
can be reduced by 4×4 in BDD100K (i.e., 16× reduction
in the number of pixels), without any degradation of selection
attention. 3.125×3.125 and 5×5 down-sampling ratios work
for the MSRA10K and COCO2017 datasets, respectively. In
addition, our study is based on the grayscale image, which
further reduces the data volume by 3× from the original RGB
scale. This result matches the study of the human visual system
in [2], with a higher accuracy by our machine learning model
(i.e., U-Net). We adopt the down-sampled, grayscale images
for further experiments on model optimization.

B. Model Optimization

With the reduction of input image size, we are able to
simplify the U-Net structure into a lighter version, which we
call “U-Net-Lite”. We reduce the number of convolution layers
to five in the decoder, and holistically decrease the number
of channels in each layer. Table II presents the results on
BDD100K. Based on the tradeoff between model simplicity
and the IoU performance, we select the structure for U-Net-
Lite in our study.

TABLE II: Simplification of model structure on BDD100K.

Selective Attention Model Model Structure∗ IoU
U-Net (Original) (64, 128, 256, 512, 512) 0.796
Model 1 (64, 128, 128, 256, 256) 0.794
Model 2 (16, 32, 32, 64, 64) 0.739
U-Net-Lite (16, 32, 32, 32, 32) 0.742
Model 3 (16, 16, 32, 32, 32) 0.710
Model 4 (16, 16, 16, 16, 32) 0.684

∗Model structure denotes the number of channels in the encoder. While the
original U-Net has two convolution layers in each decoder level, our models
only have one layer.

Moreover, we adjust the weighted cross-entropy in the
loss function of U-Net-Lite (Section II-B) to maximize the
coverage of true object pixels (i.e., higher TP and lower FN).
While a lower β in Eq. (3) improves the coverage, it also leads
to more selected pixels as the overhead. We adopt β = 0.001
for BDD100K, and β = 0.1 for the other two datasets, which
achieves a marginal loss in segmentation.

C. Accuracy of Object Detection

Finally, we evaluate the accuracy of object detection with
the selected pixels only, with a black background (Fig. 1). Two
OD algorithms are used, the vision transformer, Swin Trans-
former (SWIN) [8], and the convolution-based YOLO [9]. To
compensate for the loss of fine object features through the
selection process, we uniformly pad the selected region with
an extra number of pixels. Fig. 3 presents the OD results under
various amounts of padding. Based on the tradeoff between
pixel overhead and mAP, we select 20 extra pixels for padding.
With the padding to guarantee the OD accuracy, we only need
to select 69.4%, 72.9%, 29.5% of the entire image area, for
MSRA10K, COCO2017, and BDD100K, respectively, which
promises higher processing efficiency.

Fig. 3: Padding improves the mAP in object detection, for both SWIN
and YOLO models on BDD100K. The mAP values are normalized
to that from the full RGB image, for each OD algorithm.

TABLE I: Evaluation of down-sampled, grayscale images in selective attention. U-Net is used in this experiment.

Dataset MSRA10K COCO 2017 BDD100K
Image Image size F0.3 MAE maxF Image size IoU TPR Image size IoU TPR
Original (RGB)∗ 400× 400 0.865 0.064 0.876 640× 640 0.625 0.732 1280× 720 0.752 0.794
Down-sampled (Grayscale) 128× 128 0.893 0.050 0.904 128× 128 0.645 0.786 320× 180 0.807 0.872
Down-sampling Ratio 3.125× 3.125 5× 5 4× 4

∗ For COCO 2017 and BDD100K, grayscale images are used as the original one for testing because of the big dataset size.
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IV. HARDWARE EFFICIENCY

The selective attention module effectively reduces the data
volume from the sensor, which in turn reduces the sequential
workload of the ADC to generate the output data. To imple-
ment the selective attention module on the same chip with the
pixel array, we plan to adaptively control the ADC precision
(i.e., low precision, down-sampled output for selection, and
full precision for regular output) and pipeline the operation
between selection and image output. In this section, we eval-
uate the improvement of computation and data-path efficiency
to justify the feasibility for future implementation.

A. Computation Cost of Selective Attention

The computation cost of selection attention should be mini-
mized, such that the addition of it in the sensor data-path does
not restrict the throughput, as proposed in Fig. 1.

We develop two main techniques to address the efficiency
issue: scaling down the input image and simplification of the
network, as explained in previous sections. Table III sum-
marizes the results of three datasets. Even after the padding,
selective attention is able to reduce the number of pixels to
29.5-72.9% of the original image. The reduction will be more
significant when the object ratio is smaller. Together with 3×
reduction by the grayscale and 420× reduction in model size,
the computation cost is reduced to 0.035-0.089%.

TABLE III: Improvement of the efficiency in selective attention.

Pixels (a.u.)∗ MSRA10K COCO 2017 BDD100K
Object pixels 22.2% 29.8% 10.7%
Selection 30.4% 59.7% 21.3%
Post padding 69.4% 72.9% 29.5%
Model size (a.u.)∗ 0.24% 0.24% 0.24%
Computation cost (a.u.)∗ 0.089% 0.035% 0.054%

∗ Pixels are normalized to the full image; model size is normalized to that
of U-Net; computation cost is based on the number of operations, normalized
to that of U-Net with the full RGB image.

B. Improvement of Sensor Performance

The reduction of output data volume proportionally reduces
the cost of the sequential ADC operations. To quantitatively
evaluate such benefit, we extract a scalable power consumption
(P ) and latency (T ) model from design data of a CMOS image
sensor [1], [10], as the functions of the number of pixels, pixel
generation, ADC operation, and digital data readout :

P = NR ·NC · (PPIX + PADC + PRD) (5)
T = NR · (TPIX + TADC + TRD) (6)

where NR is the number of pixel rows, NC is the number
of pixel columns, and PPIX , PADC , PRD, TPIX , TADC ,
TRD denote the power consumption and latency for pixel
generation, ADC and digital readout, respectively.

Based on this model, we extrapolate the latency and power
saving with the selective attention module. Fig. 4 presents
the result on BDD100K. With a larger image size, both
power consumption and latency dramatically increase due to
sequential ADC and data buffering. With a lower volume of
output pixels, we expect to save the power consumption by

4.3× and latency by 3.4×. These results confirm the potential
of selection attention for high-throughput imaging.

0.0

0.2

0.4

0.6

0.8

1.0

BDD100K

 Total
 ADC

Po
we

r C
on

su
m

pt
io

n 
(a

.u
.)

320 x 240 480 x 360 640 x 480 960 x 720 1280 x 720 Proposed
0.0

0.2

0.4

0.6

0.8

1.0

4.3x

3.4x

Image size

La
te

nc
y 

(a
.u

.)

Proposed

Fig. 4: The incorporation of selective attention effectively reduces the
power consumption and latency in image processing.

V. SUMMARY

By implementing the selective attention mechanism, our
proposed work considerably reduces the data volume and im-
proves the processing efficiency. With image down-sampling,
model optimization, and reasonable padding, our method re-
quires only 69.4%, 72.9% and 29.5% of the full image on
OD task, for MSRA10K, COCO2017, and BDD100K, respec-
tively. As a result, the method saves 4.3× power consumption
and 3.4× latency of a CMOS image sensor on BDD100K.

REFERENCES

[1] J. Choi, S. Park, J. Cho, and E. Yoon, “An energy/illumination-adaptive
cmos image sensor with reconfigurable modes of operations,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1438–1450, 2015.

[2] S. Yohanandan, A. Song, A. G. Dyer, A. Faragasso, S. Roy, and D. Tao,
“Fast efficient object detection using selective attention,” arXiv e-prints,
pp. arXiv–1811, 2018.

[3] S. Yohanandan, A. Song, A. G. Dyer, and D. Tao, “Saliency preservation
in low-resolution grayscale images,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 235–251.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[6] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[7] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

[8] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[10] J. Choi, J. Shin, D. Kang, and D.-S. Park, “Always-on cmos image
sensor for mobile and wearable devices,” IEEE Journal of Solid-State
Circuits, vol. 51, no. 1, pp. 130–140, 2015.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 25,2024 at 18:03:48 UTC from IEEE Xplore.  Restrictions apply. 


		2023-07-18T09:41:20-0400
	Preflight Ticket Signature




